• Title/Summary/Keyword: sentinel-2

Search Result 258, Processing Time 0.032 seconds

Evaluation of Spectral Band Adjustment Factor Applicability for Near Infrared Channel of Sentinel-2A Using Landsat-8 (Landsat-8을 활용한 Sentinel-2A Near Infrared 채널의 Spectral Band Adjustment Factor 적용성 평가)

  • Nayeon Kim;Noh-hun Seong;Daeseong Jung;Suyoung Sim;Jongho Woo;Sungwon Choi;Sungwoo Park;Kyung-Soo Han
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.3
    • /
    • pp.363-370
    • /
    • 2023
  • Various earth observation satellites need to provide accurate and high-quality data after launch. To maintain and enhance the quality of satellite data, it is crucial to employ a cross-calibration process that accounts for differences in sensor characteristics, such as the spectral band adjustment factor (SBAF). In this study, we utilized Landsat-8 and Sentinel-2A satellite imagery collected from desert sites in Libya4, Algeria3, and Mauritania2 among pseudo-invariant calibration sites to calculate and apply SBAF, thereby compensating the uncertainties arising from variations in bandwidths. We quantitatively compared the reflectance differences based on the similarity of bandwidths, including Blue, Green, Red, and both the near-infrared (NIR) narrow, and NIR bands of Sentinel-2A. Following the application of SBAF, significant results with reflectance differences of approximately 1% or less were observed for all bands except NIR. In the case of the Sentinel-2A NIR band, it exhibited a significantly larger bandwidth difference compared to the NIR narrow band. However, after applying SBAF, the reflectance difference fell within the acceptable error range (5%) of 1-2%. It indicates that SBAF can be applied even when there is a substantial difference in the bandwidths of the two sensors, particularly in situations where satellite utilization is limited. Therefore, it was determined that SBAF could be applied even when the bandwidth difference between the two sensors is large in a situation where satellite utilization is limited. It is expected to be helpful in research utilizing the quality and continuity of satellite data.

Detection of Forest Fire and NBR Mis-classified Pixel Using Multi-temporal Sentinel-2A Images (다시기 Sentinel-2A 영상을 활용한 산불피해 변화탐지 및 NBR 오분류 픽셀 탐지)

  • Youn, Hyoungjin;Jeong, Jongchul
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.6_2
    • /
    • pp.1107-1115
    • /
    • 2019
  • Satellite data play a major role in supporting knowledge about forest fire by delivering rapid information to map areas damaged. This study, we used 7 Sentinel-2A images to detect change area in forests of Sokcho on April 4, 2019. The process of classify forest fire severity used 7 levels from Sentinel-2A dNBR(differenced Normalized Burn Ratio). In the process of classifying forest fire damage areas, the study selected three areas with high regrowth of vegetation level and conducted a detailed spatial analysis of the areas concerned. The results of dNBR analysis, regrowth of coniferous forest was greater than broad-leaf forest, but NDVI showed the lowest level of vegetation. This is the error of dNBR classification of dNBR. The results of dNBR time series, an area of forest fire damage decreased to a large extent between April 20th and May 3rd. This is an example of the regrowth by developing rare-plants and recovering broad-leaf plants vegetation. The results showed that change area was detected through the change detection of danage area by forest category and the classification errors of the coniferous forest were reached through the comparison of NDVI and dNBR. Therefore, the need to improve the precision Korean forest fire damage rating table accompanied by field investigations was suggested during the image classification process through dNBR.

Detection of Landslide-damaged Areas Using Sentinel-2 Image and ISODATA (Sentinel-2 영상과 자기조직화 분류기법을 활용한 산사태 피해지 탐지 - 2020년 곡성 산사태를 사례로 -)

  • KIM, Dae-Sun;LEE, Yang-Won
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.23 no.4
    • /
    • pp.253-265
    • /
    • 2020
  • As the risk of landslide is recently increasing due to the typhoons and localized heavy rains, effective techniques for the landslide damage detection are required to support the establishment of the recovery planning. This study describes the analysis of landslide-damaged areas using ISODATA(Iterative Self-Organizing Data Analysis Technique Algorithm) with Sentinel-2 image, regarding the case of Gokseong in August 7, 2020. A total of 4.75 ha of landslide-damaged areas was detected from the Sentinel-2 image using spectral characteristics of red, NIR(Near Infrared), and SWIR(Shortwave Infrared) bands. We made sure that the satellite remote sensing is an effective method to detect the landslide-damaged areas and support the establishment of the recovery planning, followed by the field surveys that require a lot of manpower and time. Also, this study can be used as a reference for the landslide management for the CAS500-1/2(Compact Advanced Satellite) scheduled to launch in 2021 and the Korean Medium Satellite for Agriculture and Forestry scheduled to launch in 2024.

Cloud Detection from Sentinel-2 Images Using DeepLabV3+ and Swin Transformer Models (DeepLabV3+와 Swin Transformer 모델을 이용한 Sentinel-2 영상의 구름탐지)

  • Kang, Jonggu;Park, Ganghyun;Kim, Geunah;Youn, Youjeong;Choi, Soyeon;Lee, Yangwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1743-1747
    • /
    • 2022
  • Sentinel-2 can be used as proxy data for the Korean Compact Advanced Satellite 500-4 (CAS500-4), also known as Agriculture and Forestry Satellite, in terms of spectral wavelengths and spatial resolution. This letter examined cloud detection for later use in the CAS500-4 based on deep learning technologies. DeepLabV3+, a traditional Convolutional Neural Network (CNN) model, and Shifted Windows (Swin) Transformer, a state-of-the-art (SOTA) Transformer model, were compared using 22,728 images provided by Radiant Earth Foundation (REF). Swin Transformer showed a better performance with a precision of 0.886 and a recall of 0.875, which is a balanced result, unbiased between over- and under-estimation. Deep learning-based cloud detection is expected to be a future operational module for CAS500-4 through optimization for the Korean Peninsula.

Gap-Filling of Sentinel-2 NDVI Using Sentinel-1 Radar Vegetation Indices and AutoML (Sentinel-1 레이더 식생지수와 AutoML을 이용한 Sentinel-2 NDVI 결측화소 복원)

  • Youjeong Youn;Jonggu Kang;Seoyeon Kim;Yemin Jeong;Soyeon Choi;Yungyo Im;Youngmin Seo;Myoungsoo Won;Junghwa Chun;Kyungmin Kim;Keunchang Jang;Joongbin Lim;Yangwon Lee
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.6_1
    • /
    • pp.1341-1352
    • /
    • 2023
  • The normalized difference vegetation index (NDVI) derived from satellite images is a crucial tool to monitor forests and agriculture for broad areas because the periodic acquisition of the data is ensured. However, optical sensor-based vegetation indices(VI) are not accessible in some areas covered by clouds. This paper presented a synthetic aperture radar (SAR) based approach to retrieval of the optical sensor-based NDVI using machine learning. SAR system can observe the land surface day and night in all weather conditions. Radar vegetation indices (RVI) from the Sentinel-1 vertical-vertical (VV) and vertical-horizontal (VH) polarizations, surface elevation, and air temperature are used as the input features for an automated machine learning (AutoML) model to conduct the gap-filling of the Sentinel-2 NDVI. The mean bias error (MAE) was 7.214E-05, and the correlation coefficient (CC) was 0.878, demonstrating the feasibility of the proposed method. This approach can be applied to gap-free nationwide NDVI construction using Sentinel-1 and Sentinel-2 images for environmental monitoring and resource management.

Detection of Landfast Sea Ice Near Jang Bogo Antarctic Research Station Using Layer-Stacked Sentinel-1 Interferometric SAR Coherence Images (Sentinel-1 영상레이더 간섭 긴밀도 영상의 레이어 병합을 활용한 남극 장보고 과학기지 주변 정착해빙 탐지)

  • Kim, Seung Hee;Han, Hyangsun
    • The Journal of Engineering Geology
    • /
    • v.32 no.2
    • /
    • pp.271-280
    • /
    • 2022
  • Landfast sea ice forms near coastlines in polar regions. Continuous monitoring of this sea ice is important, as it plays a key role in the marine ecosystem and affects the operation of nearby research stations. This study detected landfast sea ice around Jang Bogo research station in East Antarctica by stacking interferometric coherence images of Sentinel-1 synthetic aperture radar (SAR) data with 6-, 12- and 18-day temporal baselines. A total of 50 landfast sea ice maps were generated covering July 2017 to June 2018. The time series revealed regional differences in the timing of the maximum extent as well as growth rate of landfast sea ice. Overall, detecting landfast sea ice using interferometric SAR coherence seems promisingly feasible; however, limitations remain owing to low backscattering coefficients from new and smooth sea ice surfaces and subtle movements of sea ice in contact with the Campbell Glacier Tongue.

A Study on Water Surface Detection Algorithm using Sentinel-1 Satellite Imagery (Sentinel-1 위성영상을 이용한 수표면 면적 추정 알고리즘에 관한 연구)

  • Lee, Dalgeun;Cheon, Eun Ji;Yun, Hyewon;Lee, Mi Hee
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.5_2
    • /
    • pp.809-818
    • /
    • 2019
  • The Republic of Korea is very vulnerable to damage from storm and flood due to the rainfall phenomenon in summer and the topography of the narrow peninsula. The damage is recently getting worse because of the concentration rainfall. The accurate damage information production and analysis is required to prepare for future disaster. In this study, we analyzed the water surface area changes of Byeokjeong, Sajeom, Subu and Boryeong using Sentinel-1 satellite imagery. The surface area of the Sentinel-1 satellite, taken from May 2015 to August 2019, was preprocessed using RTC and image binarization using Otsu. The water surface area of reservoir was compared with the storage capacity from WAMIS and RIMS. As a result, Subu and Boryeong showed strong correlations of 0.850 and 0.941, respectively, and Byeokjeong and Sajeom showed the normal correlation of 0.651 and 0.657. Thus, SAR satellite imagery can be used to objective data as disaster management.

Machine Learning-Based Atmospheric Correction Based on Radiative Transfer Modeling Using Sentinel-2 MSI Data and ItsValidation Focusing on Forest (농림위성을 위한 기계학습을 활용한 복사전달모델기반 대기보정 모사 알고리즘 개발 및 검증: 식생 지역을 위주로)

  • Yoojin Kang;Yejin Kim ;Jungho Im;Joongbin Lim
    • Korean Journal of Remote Sensing
    • /
    • v.39 no.5_3
    • /
    • pp.891-907
    • /
    • 2023
  • Compact Advanced Satellite 500-4 (CAS500-4) is scheduled to be launched to collect high spatial resolution data focusing on vegetation applications. To achieve this goal, accurate surface reflectance retrieval through atmospheric correction is crucial. Therefore, a machine learning-based atmospheric correction algorithm was developed to simulate atmospheric correction from a radiative transfer model using Sentinel-2 data that have similarspectral characteristics as CAS500-4. The algorithm was then evaluated mainly for forest areas. Utilizing the atmospheric correction parameters extracted from Sentinel-2 and GEOKOMPSAT-2A (GK-2A), the atmospheric correction algorithm was developed based on Random Forest and Light Gradient Boosting Machine (LGBM). Between the two machine learning techniques, LGBM performed better when considering both accuracy and efficiency. Except for one station, the results had a correlation coefficient of more than 0.91 and well-reflected temporal variations of the Normalized Difference Vegetation Index (i.e., vegetation phenology). GK-2A provides Aerosol Optical Depth (AOD) and water vapor, which are essential parameters for atmospheric correction, but additional processing should be required in the future to mitigate the problem caused by their many missing values. This study provided the basis for the atmospheric correction of CAS500-4 by developing a machine learning-based atmospheric correction simulation algorithm.

Camparison between the 1 Day and the 2 Day Protocols of Lymphoscintigraphy and Sentinel Node Biopsy using Subareolar Injection in Breast Cancer Patients: A Retrospective Study (유륜하 주사에 의한 유방암 환자의 전초림프절 스캔과 전초림프절 생검에 있어서 당일검사와 전날검사의 비교: 후향적 연구)

  • Seok, Ju-Won;Jun, Sung-Min;Nam, Hyun-Yeol;Kim, In-Ju
    • Nuclear Medicine and Molecular Imaging
    • /
    • v.43 no.1
    • /
    • pp.55-59
    • /
    • 2009
  • Purpose: Lymphoscintigraphy and sentinel node biopsy are used in detection of axillary lymph node metastasis in breast cancer patients, but standardized technique is not established. We compared the results of the injection the morning of surgery (1 day protocol) with the subareolar injection the day before surgery (2 day protocol) with the subareolar injection in patients with breast cancer having lymphoscintigraphy and sentinel node biopsy. Materials and Methods: This study included 349 patients who underwent the breast cancer operation during 2001-2004. One hundred seventy one patients (1 day protocol, 1 hour) was injected 0.8ml of Tc-99m Tin-Colloid (37 MBq) by subareolar injection on the morning of surgery. One hundred seventy eight patients (2 day protocol, 16 hour) was injected 0.8 ml of T c-99m Tin-Colloid (185 MBq) on the afternoon before surgery. Lymphoscintigraphy was performed in sitting position and sentinel node localization was performed by hand-held gamma probe during operation. Result: In the 1 day protocol, 153 cases (89.5%) of the sentinel node were localized by lymphoscintigraphy and 150 cases (87.7%) were localized by gamma probe. In the 2 day protocol, 159 cases (89.3%) were localized by lymphoscintigraphy and 154 cases (86.5%) were localized by gamma probe. There was no significant difference in localization of sentinel node between the 1 day and the 2 day protocol by lymphoscintigraphy and gamma probe (p>0.05, p>0.05). Conclusion: There was no difference the result of localization of sentinel node with subareolar injection between the 1 day and the 2 day protocol in breast cancer patients. Because the 2 day protocol allows the enough time of performing lymphoscintigraphy, it is more useful in localization of sentinel node in breast cancer patients.

Impact Analysis of Deep Learning Super-resolution Technology for Improving the Accuracy of Ship Detection Based on Optical Satellite Imagery (광학 위성 영상 기반 선박탐지의 정확도 개선을 위한 딥러닝 초해상화 기술의 영향 분석)

  • Park, Seongwook;Kim, Yeongho;Kim, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_1
    • /
    • pp.559-570
    • /
    • 2022
  • When a satellite image has low spatial resolution, it is difficult to detect small objects. In this research, we aim to check the effect of super resolution on object detection. Super resolution is a software method that increases the resolution of an image. Unpaired super resolution network is used to improve Sentinel-2's spatial resolution from 10 m to 3.2 m. Faster-RCNN, RetinaNet, FCOS, and S2ANet were used to detect vessels in the Sentinel-2 images. We experimented the change in vessel detection performance when super resolution is applied. As a result, the Average Precision (AP) improved by at least 12.3% and up to 33.3% in the ship detection models trained with the super-resolution image. False positive and false negative cases also decreased. This implies that super resolution can be an important pre-processing step in object detection, and it is expected to greatly contribute to improving the accuracy of other image-based deep learning technologies along with object detection.