• Title/Summary/Keyword: sentiment detector

Search Result 2, Processing Time 0.021 seconds

Sentiment Analysis using Latent Structural SVM (잠재 구조적 SVM을 활용한 감성 분석기)

  • Yang, Seung-Won;Lee, Changki
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.5
    • /
    • pp.240-245
    • /
    • 2016
  • In this study, comments on restaurants, movies, and mobile devices, as well as tweet messages regardless of specific domains were analyzed for sentimental information content. We proposed a system for extraction of objects (or aspects) and opinion words from each sentence and the subsequent evaluation. For the sentiment analysis, we conducted a comparative evaluation between the Structural SVM algorithm and the Latent Structural SVM. As a result, the latter showed better performance and was able to extract objects/aspects and opinion words using VP/NP analyzed by the dependency parser tree. Lastly, we also developed and evaluated the sentiment detector model for use in practical services.

Korean Ironic Expression Detector (한국어 반어 표현 탐지기)

  • Seung Ju Bang;Yo-Han Park;Jee Eun Kim;Kong Joo Lee
    • The Transactions of the Korea Information Processing Society
    • /
    • v.13 no.3
    • /
    • pp.148-155
    • /
    • 2024
  • Despite the increasing importance of irony and sarcasm detection in the field of natural language processing, research on the Korean language is relatively scarce compared to other languages. This study aims to experiment with various models for irony detection in Korean text. The study conducted irony detection experiments using KoBERT, a BERT-based model, and ChatGPT. For KoBERT, two methods of additional training on sentiment data were applied (Transfer Learning and MultiTask Learning). Additionally, for ChatGPT, the Few-Shot Learning technique was applied by increasing the number of example sentences entered as prompts. The results of the experiments showed that the Transfer Learning and MultiTask Learning models, which were trained with additional sentiment data, outperformed the baseline model without additional sentiment data. On the other hand, ChatGPT exhibited significantly lower performance compared to KoBERT, and increasing the number of example sentences did not lead to a noticeable improvement in performance. In conclusion, this study suggests that a model based on KoBERT is more suitable for irony detection than ChatGPT, and it highlights the potential contribution of additional training on sentiment data to improve irony detection performance.