• Title/Summary/Keyword: sensory feedback

Search Result 100, Processing Time 0.024 seconds

A Study on Tactile Sensation Application for Computer Game and Virtual Reality (컴퓨터게임과 가상현실을 위한 촉각 응용에 관한 연구)

  • 이영재
    • Journal of Korea Multimedia Society
    • /
    • v.5 no.6
    • /
    • pp.646-654
    • /
    • 2002
  • The human sense of touch provides us with an important source of information about our surroundings. Because of its unique position at interface between our bodies and the out world, touch sensation supplies sensory data which helps us manipulate and recognize objects and warn of harmful situation. But tactile sensation was recognized less important than visual sense and auditory sense but it plays an important immersing role in virtual reality and computer game. Tactile sensation can be used to influence to objects according to power and supplied sensory feedback to the player in a virtual environment. This paper investigated the characteristics of tactile sensation of human being and proposed method of sturdy using force sensing sensor, simple force modeling and data structure form for virtual reality and computer game. As a result, force distribution, depth, center point can be calculated using sensor output and this information is very effective to specific position for actions and reactions. This study can used as basic information for tactile sensation and it's application in computer game and virtual realty.

  • PDF

Gender Differences in the Sensitivity and Displeasure Caused by the Vibration Stimuli Applied to the Forearm in Upper Limb Amputees

  • Kim, Sol Bi;Ko, Chang-Yong;Chang, Yun Hee;Kim, Gyoo Suk;Kim, Sin Ki
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.4
    • /
    • pp.355-361
    • /
    • 2013
  • Objective: The aim of this study is to investigate the gender-differences in vibrotactile responses(sensitivity and displeasure) of residual forearm simulated by vibration stimulation in upper limb(trans-radial) amputees. Background: Several studies have reported that vibration stimulation using the haptic vibrator is one the most effective methods for delivering sensation to an amputees. However, few studies have reported the perception to haptic vibratory stimulus, particularly sensitivity and displeasure. Method: We set up a custom-made vibration stimulation system that included 6 actuators(3 medial parts and 3 lateral parts) and a graphical user interface(GUI)-based acquisition system to investigate changes in residual somatosensory sensibility and displeasure in the forearm of upper limb(trans-radial) amputees. Vibration actuators were attached at the 25%-point on the proximal forearm. Stimulation with 32Hz, 64Hz, or 149Hz of frequency was used for the sensitivity tests and with 32~257Hz of frequency was used for the discomfort experiments. The subjective responses were evaluated on a 10 point scale. Results: The results showed that vibrotactile sensory perception in male amputees were higher than that in female amputees. In male amputees, the response at lateral area of forearm was the most sensitive than medial area; but, female amputees showed similar sensitive areas. Subjects did not experience any discomfort during vibrotactile stimuli. Conclusion: Vibrotactile response in the amputees was dependent on gender as well as area stimulated by vibration. Application: The results might contribute to develop the vibrotactile feedback system for the amputees.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Journal of Audiology & Otology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

The Impact of Optical Illusions on the Vestibular System

  • Ozturk, Seyma Tugba;Serbetcioglu, Mustafa Bulent;Ersin, Kerem;Yilmaz, Oguz
    • Korean Journal of Audiology
    • /
    • v.25 no.3
    • /
    • pp.152-158
    • /
    • 2021
  • Background and Objectives: Balance control is maintained in stationary and dynamic conditions, with coordinated muscle responses generated by somatosensory, vestibular, and visual inputs. This study aimed to investigate how the vestibular system is affected in the presence of an optical illusion to better understand the interconnected pathways of the visual and vestibular systems. Subjects and Methods: The study involved 54 young adults (27 males and 27 females) aged 18-25 years. The recruited participants were subjected to the cervical vestibular evoked myogenic potentials (cVEMP) test and video head impulse test (vHIT). The cVEMP and vHIT tests were performed once each in the absence and presence of an optical illusion. In addition, after each test, whether the individuals felt balanced was determined using a questionnaire. Results: cVEMP results in the presence of the optical illusion showed shortened latencies and increased amplitudes for the left side in comparison to the results in the absence of the optical illusion (p≤0.05). When vHIT results were compared, it was seen that the right lateral and bilateral anterior canal gains were increased, almost to 1.0 (p<0.05). Conclusions: It is thought that when the visual-vestibular inputs are incompatible with each other, the sensory reweighting mechanism is activated, and this mechanism strengthens the more reliable (vestibular) inputs, while suppressing the less reliable (visual) inputs. As long as the incompatible condition persists, the sensory reweighting mechanism will continue to operate, thanks to the feedback loop from the efferent vestibular system.

Effectiveness of Sensory-Feedback Ankle Training on Motor Functions in Hemiparetic Patients (시지각을 이용한 발의 감각되먹임 적용이 편마비 환자의 운동기능에 미치는 영향)

  • Seo, Dong-Kwon;Lee, Dong-Yeop
    • Proceedings of the KAIS Fall Conference
    • /
    • 2010.11b
    • /
    • pp.595-598
    • /
    • 2010
  • 본 연구의 목적은 뇌졸중으로 인한 만성 편마비 환자를 대상으로 발에 시지각 자극을 적용하여 균형과 보행에 관한 운동기능에 미치는 효과를 알아보고자 하였다. 6개월 이상 된 편마비 환자 16명이 연구에 참여하였고, 무작위로 실험군(EG) 10명과 대조군(CG) 10명으로 구분하였다. 두 군 모두 기본적인 물리치료를 적용하였고 실험군은 정적균형도구인 Tetrax Multiple System을 이용하여 발목에 감각되먹임 시지각 자극을 매회 30분, 4주간 주 3회 실시하였다. 운동 중재 전과 후의 운동기능에 해당하는 균형(TUG), 보행(DGI)을 측적하여 본 연구의 효과를 비교하였다. 실험군에서 정적 균형, TUG, 그리고 동적 균형지수(DGI) 지수는 중재 전후 통계적으로 유의한 차이를 나타냈고(p<.05), 실험, 대조군간 전후의 변화율에서도 유의한 차이가 나타났다(p<.05). 대조군에서는 DGI 만 중재 전후 통계적으로 유의한 차이가 나타났다. 순수하게 유산소 운동만을 실시하였다. 통계처리 방법으로 전 후 차이를 검증하기 위하여 대응표본 t 검정을 실시하였고 대조군과의 차이 검증을 위하여 독립표본 t 검정을 실시하였다. 모든 통계적 유의수준은 0.05로 하였다. 본 연구에서는 편마비 환자에게 흥미를 촉진하고 운동 기능 회복의 효과를 강화할 수 있는 감각 되먹임이 동반된 시지각 자극을 적용하여 균형 및 보행기능의 향상을 얻을 수 있었고, 차후 연구는 장기간의 추적 관찰 연구가 지속되어야 하고 발목 뿐만 아니라 다른 관절에서의 비교연구가 필요할 것이다.

  • PDF

Implementation of Medical Care System based on Home Network (홈 네트워크 방식의 헬스 케어 시스템 구현)

  • Kim, Jeong-Lae;Lee, Woo-Chul;Ko, Yun-Seok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.6
    • /
    • pp.987-991
    • /
    • 2011
  • In this paper, a health care system is implemented which can identify the parameter for moving body after exercising based on home network. This system has catched a signal for physical condition of body data using data acquisition mechanism such as a data acquisition module, a data signal processing module and a feedback module. The composition has a functions of displacement point for a BMI and WDI, that the basic parameter measure to base on the heart rate, temperature. There are checked physical condition of body exercising to compounded a physical condition of sensory organ. There are to keep the lookout for the body condition that to estimate a health care with a physical organ through a exercise.

Development of Immersive Augmented Reality interface for Minimally Invasive Surgery (증강현실 기반의 최소침습수술용 인터페이스의 개발)

  • Moon, Jin-Ki;Park, Shin-Suk;Kim, Eugene;Kim, Jin-Wook
    • The Journal of Korea Robotics Society
    • /
    • v.3 no.1
    • /
    • pp.58-67
    • /
    • 2008
  • This study developed a novel augmented reality interface for minimally invasive surgery. The augmented reality technique can alleviate the sensory feedback problem inherent to laparoscopic surgery. An augmented reality system merges real laparoscope image and reconstructed 3D patient model based on diagnostic medical image such as CT, MRI data. By using reconstructed 3D patient model, AR interface could express structure of patient body that is invisible outside visual field of laparoscope. Therefore, an augmented reality system improved sight information of limited laparoscope. In our augmented reality system, the laparoscopic view is located at the center of a wide-angle concave screen and reconstructed 3D patient model is displayed outside the laparoscope. By using a joystick, the laparoscopic view and the reconstructed 3D patient model view are changed concurrently. With our augmented reality system, the surgeon can see the peritoneal cavity from a wide angle of view, without having to move the laparoscope. Since the concave screen serves immersive environments, the surgeon can feel as if she is in the patient body. For these reasons, a surgeon can recognize easily depth information about inner parts of patient and position information of surgical instruments without laparoscope motion. It is possible for surgeon to manipulate surgical instruments more exact and fast. Therefore immersive augmented reality interface for minimally invasive surgery will reduce bodily, environmental load of a surgeon and increase efficiency of MIS.

  • PDF

Influence of Slashpipe Exercise on Symmetrical Contraction of Trunk Muscle in Normal Adults

  • Choi, Young In;Kim, Jung Sun;Kim, Shin Young
    • The Journal of Korean Physical Therapy
    • /
    • v.31 no.5
    • /
    • pp.298-303
    • /
    • 2019
  • Purpose: This study examined the effects of slashpipe exercise on reducing the thickness of the left and right external oblique, internal oblique, transverse abdominis, erector spinae, and multifidus muscles. Methods: A total of 29 healthy adult men and women were included in the study. They performed trunk flexion in the supine position and trunk extension in the prone position with a slashpipe and weight bar. The external oblique, internal oblique, and transverse abdominis muscles were measured in the supine position, while the erector spinae and multifidus muscles were measured in the prone position. The data were analyzed using the SPSS ver 21.0 statistical program. The difference in thickness between the right and left sides of the trunk muscle was analyzed by repeated measures analysis. The statistical significance level was set to p<0.05. Results: The results showed that the slashpipe exercise reduced significantly the difference in thickness of the oblique internus and erector spinae muscles compared to the weight bar exercise. Conclusion: The chaotic fluidity of the fluid filled inside the slashpipe could be used as sensory feedback information on body mal-alignment, which would have positively affected the symmetrical contraction of the trunk muscles as a trigger for self-correction. Therefore, it will have a useful effect not only on the health of the general public, but also on low back patients and athletes with muscle asymmetry.

Changes in EEG According to Attention and Concentration Training Programs with Performed Difference Tasks (주의·집중훈련 프로그램의 두 가지 과제수행에 따른 뇌파 변화)

  • Chae, Jung-Byung
    • PNF and Movement
    • /
    • v.12 no.2
    • /
    • pp.97-106
    • /
    • 2014
  • Purpose: The purpose of this study was to investigate changes in EEG through attention. Concentration training and performing tasks are important factors in the improvement of motor learning ability. Methods: In the experiment, 22 healthy people were divided into two groups: the trail making test (TMT) group and the computerized neurocognitive function test (CNT) group. A one-way Neuro Harmony M test to see whether there was a significant difference among the groups. Results: The TMT group showed a significant increase in ${\alpha}$ wave, ${\alpha}$ wave sequence, and ${\beta}$ wave sequence; however, there were no significant differences in SMR wave, SMR wave sequence, and ${\beta}$ wave. The CNT group showed increases in ${\alpha}$ wave, ${\alpha}$ wave sequence, SMR wave, SMR wave sequence, and ${\beta}$ wave sequence; however, there was no significant difference in ${\beta}$ wave. In EEGs before and after two performance tasks were changed, there were significant differences in ${\beta}$ wave, SMR wave, SMR wave sequence; however, there were no significant differences in ${\alpha}$ wave sequence, ${\beta}$ wave, and ${\beta}$ wave sequence. Conclusion: Attention training and concentration training offer feedback and repetition for constant stimulus and response. Moreover, attention training and concentration training can contribute to new studies and motivation by developing fast sensory and motor skills through acceptable visual and auditory stimulation.

Evolutionary Optimization of Neurocontroller for Physically Simulated Compliant-Wing Ornithopter

  • Shim, Yoonsik
    • Journal of the Korea Society of Computer and Information
    • /
    • v.24 no.12
    • /
    • pp.25-33
    • /
    • 2019
  • This paper presents a novel evolutionary framework for optimizing a bio-inspired fully dynamic neurocontroller for the maneuverable flapping flight of a simulated bird-sized ornithopter robot which takes advantage of the morphological computation and mechansensory feedback to improve flight stability. In order to cope with the difficulty of generating robust flapping flight and its maneuver, the wing of robot is modelled as a series of sub-plates joined by passive torsional springs, which implements the simplified version of feathers attached to the forearm skeleton. The neural controller is designed to have a bilaterally symmetric structure which consists of two fully connected neural network modules receiving mirrored sensory inputs from a series of flight navigation sensors as well as feather mechanosensors to let them participate in pattern generation. The synergy of wing compliance and its sensory reflexes gives a possibility that the robot can feel and exploit aerodynamic forces on its wings to potentially contribute to the agility and stability during flight. The evolved robot exhibited target-following flight maneuver using asymmetric wing movements as well as its tail, showing robustness to external aerodynamic disturbances.