• Title/Summary/Keyword: sensorless drive

Search Result 327, Processing Time 0.021 seconds

Sensorless Speed Control of Direct Current Motor by Neural Network (신경회로망을 이용한 직류전동기의 센서리스 속도제어)

  • 강성주;오세진;김종수
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.90-97
    • /
    • 2004
  • DC motor requires a rotor speed sensor for accurate speed control. The speed sensors such as resolvers and encoders are used as speed detectors. but they increase cost and size of the motor and restrict the industrial drive applications. So in these days. many Papers have reported on the sensorless operation or DC motor(3)-(5). This paper Presents a new sensorless strategy using neural networks(6)-(8). Neural network structure has three layers which are input layer. hidden layer and output layer. The optimal neural network structure was tracked down by trial and error and it was found that 4-16-1 neural network has given suitable results for the instantaneous rotor speed. Also. learning method is very important in neural network. Supervised learning methods(8) are typically used to train the neural network for learning the input/output pattern presented. The back-propagation technique adjusts the neural network weights during training. The rotor speed is gained by weights and four inputs to the neural network. The experimental results were found satisfactory in both the independency on machine parameters and the insensitivity to the load condition.

Sensorless Sliding Mode Control of an Induction Motor using Adaptive Speed Observer (적응 속도 관측기를 사용한 유도전동기의 센서리스 슬라이딩 모드 제어)

  • Jie, Min-Seok;Kim, Chin-Su;Lee, Jae-Yong;Lee, Kang-Woong
    • Journal of Advanced Navigation Technology
    • /
    • v.10 no.3
    • /
    • pp.191-197
    • /
    • 2006
  • In the paper propose a sensorless sliding mode control method of an induction motor using an adaptive speed control. The control objective is apply to adaptive speed observer instead of a encoder and to remove errors using the sliding mode current controller by parameters variation and disturbances that include the current controller. A stability of the sliding mode current controller and the adaptive speed observer using a design controller is guaranteed by the Lyapunov stability criterion. The performance of the proposed control system is demonstrated by simulation using the matlab silmulink and experimental results using induction motor show that the proposed method can apply an induction motor control.

  • PDF

Unscented Transformation According to Scaling Parameter for Motor Drive without Position Sensor (위치 센서 없는 전동기 구동장치를 위한 스케일링 파라미터에 따른 무향 변환)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.53 no.6
    • /
    • pp.174-180
    • /
    • 2016
  • This paper study about an unscented Kalman filter with a variety type of unscented transformation to estimate state values for speed control without position sensor of a permanent-magnet synchronous motor. The principles of an unscented transformation and unscented Kalman filter are examined and their application is explained. Generally the mapping process can be divided into two type, such as a basic and a general form according to a scaling parameter. And computation time, the number of samples, and weights about samples are different from each other. But, there is no little information on the scaling parameter value how this value influences the system performance. Simulation and experimental results show the validity of the designed unscented transformation performance with the various scaling parameter values for sensorless motor drive.

A Sensorless Rotor Position Estimation Scheme for IPMSM Using HF Signal Injection with Frequency and Amplitude Optimization

  • Lu, Jiadong;Liu, Jinglin;Hu, Yihua;Zhang, Xiaokang;Ni, Kai;Si, Jikai
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.5
    • /
    • pp.1945-1955
    • /
    • 2018
  • High frequency signal injection (HFI) is an alternative method for estimating rotor position of interior permanent magnet synchronous motor (IPMSM). The general method of frequency and amplitude selection is based on error tolerance and experiments, and is usually set with only one group of HF parameters, which is not efficient for different working modes. This paper proposes a novel rotor position estimation scheme by HFI with optimized frequency and amplitude, based on the mathematic model of IPMSM. The requirements for standstill and low-speed operational modes are met by applying this novel scheme. Additionally, the effects of the frequency and amplitude of the injected HF signal on the position estimation results under different operating conditions are analyzed. Furthermore, an optimization method for HF parameter selection is proposed to make the estimation process more efficient under different working conditions according to error tolerance. The effectiveness of the propose scheme is verified by the experiments on an IPMSM motor prototype.

Sensorless Vector Control of PMSM (PMSM 드라이브의 센서리스 벡터제어)

  • Lee, Jung-Chul;Lee, Hong-Gyun;Jung, Tack-Gi;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2002.07b
    • /
    • pp.1140-1142
    • /
    • 2002
  • This paper is proposed to position and speed control of interior permanent magnet synchronous motor(IPMSM) drive without mechanical sensor. The rotor position, which is an essential component of any vector control schemes, is calculated through the instantaneous stator flux position and an estimated flux value of rotating reference frame. A closed-loop state observer is implemented to compute the speed feedback signal. The validity of the proposed sensorless scheme is confirmed by simulation and its dynamic performance is examined in detail.

  • PDF

Robust Sensorless Sliding Mode Flux Observer for DTC-SVM-based Drive with Inverter Nonlinearity Compensation

  • Aimad, Ahriche;Madjid, Kidouche;Mekhilef, Saad
    • Journal of Power Electronics
    • /
    • v.14 no.1
    • /
    • pp.125-134
    • /
    • 2014
  • This paper presents a robust and speed-sensorless stator flux estimation for induction motor direct torque control. The proposed observer is based on sliding mode approach. Stator electrical equations are used in the rotor orientation reference frame to eliminate the observer dependence on rotor speed. Lyapunov's concept for systems stability is adopted to confine the observer gain. Furthermore, the sensitivity of the observer to parameter mismatch is recovered with an adaptation technique. The nonlinearities of the pulse width modulation voltage source inverter are estimated and compensated to enhance stability at low speeds. Therefore, a new method based on the model reference adaptive system is proposed. Simulation and experimental results are shown to verify the feasibility and effectiveness of the proposed algorithms.

Speed Error Compensation By Rotor Resistance Estimation in Sensor-less Vector Control (속도센서없는 벡터제어시 회전자저항 추정에 의한 속도오차보상)

  • Kim, Joohn-Sheok;Mok, Hyung-Soo;Kim, Heui-Wook;Park, Min-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1990.11a
    • /
    • pp.326-331
    • /
    • 1990
  • In the vector-controlled induction machine drive, mechanical sensors restrict the wide applications of high performance AC drives. So in resent years, many papers have been presented which doesn't need mechanical sensors, named by sensorless vector control. But sensorless control has a few serious problem, one of which Is poor speed estimation in case of incorrect rotor resistance (Rr) information. This paper describes the stator flux orientation speed control strategy with the speed estimation algorithm. and the method of adapting Rr change due to thermal heating. By proposed method. We can acquire precise speed estimation and higher performance.

  • PDF

Sensorless Vector Control of SPMSM using Adaptive Observer (적응관측기를 이용한 SPMSM의 센서리스 벡터제어)

  • Jung, Tack-Gi;Lee, Jung-Chul;Lee, Hong-Gyun;Lee, Young-Sil;Chung, Dong-Hwa
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.200-202
    • /
    • 2003
  • This paper is proposed to position and speed control of surface permanent magnet synchronous motor(SPMSM) drive without mechanical sensor. A adaptive state observer is used for the mechanical state estimation of the motor. The observer was developed based on nonlinear model of SPMSM, that employs a d-q rotating reference frame attached to the rotor. A adaptive observer is implemented to compute the speed and position feedback signal. The validity of the proposed sensorless scheme is confirmed by various response characteristics.

  • PDF

The Parameter Compensation Technique of Induction Motor by Neural Network (신경회로망을 이용한 유도전동기의 파라미터 보상)

  • Kim Jong-Su;Oh Sae-Gin;Kim Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.30 no.1
    • /
    • pp.169-175
    • /
    • 2006
  • This paper describes how an Artificial Neural Network(ANN) can be employed to improve a speed estimation in a vector controlled induction motor drive. The system uses the ANN to estimate changes in the motor resistance, which enable the sensorless speed control method to work more accurately. Flux Observer is used for speed estimation in this system. Obviously the accuracy of the speed control of motor is dependent upon how well the parameters of the induction machine are known. These parameters vary with the operating conditions of the motor; both stator resistance(Rs) and rotor resistance(Rr) change with temperature, while the stator leakage inductance varies with load. This paper proposes a parameter compensation technique using artificial neural network for accurate speed estimation of induction motor and simulation results confirm the validity of the proposed scheme.

Sensorless Speed Control of Induction Motor using Current Compensation

  • Oh, Sae-Gin;Kim, Jong-Su;Kim, Sung-Hwan
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.503-510
    • /
    • 2003
  • A new method of induction motor drive, which requires neither shaft encoder nor speed estimator, is presented. The proposed scheme is based on decreasing current gap between a numerical model and an actual motor. By supplying the identical instantaneous voltage to both model and motor in the direction of reducing the current difference. the rotor approaches to the model speed. that is. reference value. The indirect field orientation algorithm is employed for tracking the model currents. The performance of induction motor drives without speed sensor is generally characteristic of poorness at very low speed. However, in this system, it is possible to obtain good speed response in the extreme low speed range.