• Title/Summary/Keyword: sensorless algorithm

Search Result 293, Processing Time 0.024 seconds

Input Voltage Sensorless Control for 3 Phase Vienna Rectifier (3상 비엔나 정류기 입력 전압 센서리스 제어)

  • Lee, Sang-Ri;Kim, Hag-Wone;Cho, Kwan-Yuhl;Hwang, Soon-Sang;Yoon, Byung-Chul
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.19 no.1
    • /
    • pp.71-79
    • /
    • 2014
  • In this paper, a new grid voltage estimation algorithm without voltage sensors is proposed for the three-phase vienna rectifier. Generally, input voltage sensor circuits increase size and cost of the PWM rectifier In order to reduce the cost and size and in order to increase reliability from the electrical noise, grid voltage estimation scheme without input voltage sensor is highly required. In this paper, the grid voltage estimation algorithm is proposed by a simple MRAS(Model Reference Adaptive System) observer without input voltage sensors. The validity of the proposed method is proven by simulation and experiment on the three-phase vienna rectifier system.

Position Sensorless Control of PMSM Drive for Electro-Hydraulic Brake Systems

  • Yoo, Seungjin;Son, Yeongrack;Ha, Jung-Ik;Park, Cheol-Gyu;You, Seung-Han
    • Journal of Drive and Control
    • /
    • v.16 no.3
    • /
    • pp.23-32
    • /
    • 2019
  • This study proposed a fault tolerant control algorithm for electro-hydraulic brake systems where permanent magnet synchronous motor (PMSM) drive is adopted to boost the braking pressure. To cope with motor position sensor faults in the PMSM drive, a braking pressure controller based on an open-loop speed control method for the PMSM was proposed. The magnitude of the current vector was determined from the target braking pressure, and motor rotational speed was derived from the pressure control error to build up the braking pressure. The position offset of the pump piston resulting from a leak in the hydraulic system is also compensated for using the open-loop speed control by moving the piston backward until it is blocked at the end of stroke position. The performance and stability of the proposed controller were experimentally verified. According to the results, the control algorithm can be utilized as an effective means of degraded control for electro-hydraulic brake systems in the case that a motor position sensor fault occurs.

Sensorless Fuzzy Logic Soft Start of Induction Motor With Load Detection

  • Arehpanahi, Mehdi;Monfared, Jafar Mili;Abbaszadeh, Karim
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2378-2381
    • /
    • 2003
  • In recent years, fuzzy logic has received greater emphasis in the field of power electronics and motion control by virtue of its adaptive capability. A new fuzzy logic based soft-start scheme for induction motor drives close to load detection has been discussed here using microcontroller based thyristorised voltage controller. Rule based soft-start algorithm is fully realised through a software approach only. The soft-start strategy is based on the change of input impedance during starting period. The prototype has been tested under various loading conditions and found to be reliable.

  • PDF

Field Oriented Control of an Induction Motor in a Wide Speed Operating Region (벡터제어(制御) 유도전동기(誘導電動機)의 광역운전(廣域運轉))

  • Kim, Sang-Hoon
    • Journal of Industrial Technology
    • /
    • v.17
    • /
    • pp.79-85
    • /
    • 1997
  • This paper describes a control for the high performance induction motor drive system with a wide speed operating range and proposes a robust control method independent of motor parameter variation. For the operation below the rated speed, the high performance control is achieved by using the indirect field-oriented control with a speed sensor. In the high speed regain, the field weakening region with a large variation in motor parameters, the motor drive system can obtain the robustness to motor parameter variation by switchover to the direct field-oriented control. Also, the sensorless speed control using estimated speed is achieved in very high speed region that the utilization of speed sensor pulses is limited. And from experiments using high performance 32bit DSP for 2.2[kW] and 22[kW] laboratory induction motor drive systems, it is verified that the proposed opration algorithm provided a good performance.

  • PDF

Sensorless Vector Control of Induction Motor Compensating the variation of rotor resistance (회전자 저항 변동을 보상한 유도전동기의 센서리스 백터 제어)

  • Park, Chang-Hoon;Kim, Kwang-Yeon;Lee, Taeck-Kie;Hyun, Dong-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1991.11a
    • /
    • pp.140-143
    • /
    • 1991
  • This paper describes a compensation method for the rotor resistance variation of induction machines in speed sensor-less vector control system using MRAS(model reference adaptive system). In case of rotor resistance variation, the analysis of the conventional speed sensor-less vector control system using MRAS is presented and the compensation method for rotor resistance variation using Fuzzy logic is proposed. In order to confirm the performance of the proposed algorithm, computer simulation is performed.

  • PDF

Sensorless Vector Control of Induction Motors Using a New Reduced-Order Extended Luenberger Observer (새로운 축소 차원 확장 루엔버거 관측기를 이용한 유도 전동기의 센서리스 벡터제어)

  • Lee, Kyo-Beum;Song, Joo-Ho;Song, Joong-Ho;Choy, Ick
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.53 no.3
    • /
    • pp.173-179
    • /
    • 2004
  • A synthesis method of the reduced-order extended Luenberger observer (ROELO) and its design procedure for a nonlinear dynamic system are presented. This paper proposes a method to reduce the order of the observer and to ! elect the observer gain matrix. The proposed algorithm is applied for high performance induction motor drives without a speed sensor The simulation and experiment results show that the proposed ROELO provides both rotor flux and rotor speed estimation with good performance.

The synchronous DQ-frame observer and the speed adaptation for algorithm for indirect vector control of sensorless induction motor (센서없는 유도전동기의 간접 벡터제어를 위한 동기 좌표계 관측기 및 속도적응 알고리즘)

  • Shin, Hwi-Beom;Park, Jong-Gyu;Kim, Bong-Sick
    • Proceedings of the KIEE Conference
    • /
    • 1996.07a
    • /
    • pp.458-460
    • /
    • 1996
  • In this study, the full-state flux observer is designed in the synchronous DQ-frame and the speed adaptation rule is derived by using the MRAS(Model Reference Adaptive System) theory. In this rule, the induction motor becomes a reference model and the flux observer is taken as a adjustable model. A guideline of the adaptation gain is investigated for the precise and stable speed adaptation and the proposed scheme is compared with the conventional one designed in the stationary DQ-frame.

  • PDF

A Research for Novel Brushless Direct Current Motor Position Senseless Drive Using Single Current Sensor (단일전류센서를 이용한 브러시리스 직류 전동기의 새로운 센서리스 제어에 관한 연구)

  • Kim, Byung-Bok;Jang, Jae-Wan;Jang, Ki-Bong;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.141-143
    • /
    • 2003
  • This paper proposes a new sensorless drive system for the trapezoidal Brushless Direct Current (BLDC) motor requiring mechanical position or speed sensor. The proposed method is using only one current sensor For this an indirect rotor position sensing method from the periodically variation DC Link current waveform. DC Link current waveform change from high to low when BLDC commutate status. This algorithm was verified by simulations using MATLAB SIMULINK and experiment.

  • PDF

Maximum Torque Operation of IPMSM Drives without Speed & Rotor Position Sensors Using An Extended Kalman Filter (확장된 칼만 필터를 이용한 속도 및 검출기가 없는 IPMSM의 최대토크 운전)

  • 김윤호;윤병도;국윤상
    • Proceedings of the KIPE Conference
    • /
    • 1996.06a
    • /
    • pp.21-25
    • /
    • 1996
  • To control the speed of IPMSM drives it is necessary to know the speed and the rotor position. This is normally done by measurement of this values with electromechenical sensors. In this paper, a new approach to the position elimination method for the high performance variable speed IPMSM drives with the current controlled PWM technique is presented. For the high performance drive capability in the speed region, a Extended Kalman filter algorithm is adopted to estimate the rotor position as well as the angular velocity for the practical sensorless IPMSM drives. The high performance drive characteristics of the proposed method are verified using the wide simulation.

  • PDF

Speed Sensorless of Induction Motor using 2 layer Neural Networks (2단 신경회로망을 이용한 유도전동기의 센서리스제어)

  • Lee, Chang-Min;Choi, Chul;Park, Sung-Joon;Kim, Chul-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2000.07a
    • /
    • pp.409-412
    • /
    • 2000
  • This paper investigates a novel speed identification of induction motor using 2 layer neural networks. The proposed control strategy is based on neural networks using model of full order state observer. in the proposed neural networks system the error between the desired variable and the adaptive variable is back-propagated to adjust the rotor speed, So that the adaptive variable will coincide with the desired variable. The proposed control algorithm is verified through simulation and experiment using th digital signal processor of TMS320C31

  • PDF