• Title/Summary/Keyword: sensorless algorithm

Search Result 293, Processing Time 0.025 seconds

Accuracy Enhancement of Parameter Estimation and Sensorless Algorithms Based on Current Shaping

  • Kim, Jin-Woong;Ha, Jung-Ik
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.1-8
    • /
    • 2016
  • Dead time is typically incorporated in voltage source inverter systems to prevent short circuit cases. However, dead time causes an error between the output voltage and reference voltage. Hence, voltage equation-based algorithms, such as motor parameter estimation and back electromotive force (EMF)-based sensorless algorithms, are prone to estimation errors. Several dead-time compensation methods have been developed to reduce output voltage errors. However, voltage errors are still common in zero current crossing areas, and an effect of the error is much worse in a low speed region. Therefore, employing voltage equation-based algorithms in low speed regions is difficult. This study analyzes the conventional dead-time compensation method and output voltage errors in low speed operation areas. A current shaping method that can reduce output voltage errors is also proposed. Experimental results prove that the proposed method reduces voltage errors and improves the accuracy of the parameter estimation method and the performance of the back EMF-based sensorless algorithm.

Sensorless Starting Method and Fuel Pressure Control of BLDC Motor for Fuel Pump of Vehicle (자동차 연료 펌프용 BLDC 모터의 센서리스 기동 및 연료 압력 제어)

  • Chang, Jin-Wook;Yoon, Duck-Yong
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.2
    • /
    • pp.114-121
    • /
    • 2013
  • High efficiency operation is required for motors of vehicle to increase fuel efficiency due to the regulation of exhaust gas. This paper presents a control method of fuel pressure to increase fuel efficiency and a sensorless control method of BLDC motor to get higher efficiency than conventional brushed DC motor. Initial rotor position of BLDC motor is detected from current value that is occurred by test voltage pulse and rotor is accelerated by defined sequence to enter sensorless operation mode. The algorithm to control flow rate of fuel pump uses PI controller that is control motor speed to maintain the target fuel pressure commanded by ECU.

A Study on the New Sensorless Control Algorithm for Permanent Magnet Synchronous Motor (영구자석 동기전동기의 새로운 센서리스 제어 알고리즘에 관한 연구)

  • Jun, Byoung-Ho;Choi, Yang-Kwang;Kim, Young-Seok;Han, Yoon-Seok
    • Proceedings of the KIEE Conference
    • /
    • 2003.10b
    • /
    • pp.144-146
    • /
    • 2003
  • This paper presents a new speed sensorless control algorithm of a permanent magnet synchronous motor based on instantaneous reactive power. The proposed algorithm is constructed by instantaneous reactive power in the stationary reference frame and is not affected by mechanical motor parameters, because mechanical equation is not used. The effectiveness of the proposed algorithm is verified by the experimental results.

  • PDF

Comparison of Control Performance according to the Injection Voltage Waveform of the Harmonic Voltage Injection Sensorless Technique (주입 전압파형의 형상에 따른 고조파 주입 센서리스 기법의 제어 성능 비교)

  • Moon, Kyeong-Rok;Lee, Dong-Myung
    • Journal of IKEEE
    • /
    • v.26 no.1
    • /
    • pp.43-49
    • /
    • 2022
  • This paper compares the sensorless control performance according to the applied voltage waveform by injecting sinusoidal, triangular, and square waveform in the harmonic injection sensorless control method. By injecting various voltage shape waveform with a frequency of 1kHz, the error amount of the estimated angle for each waveform is compared and analyzed. For the experiment, the HILS(hardware in the loop simulation) system was used. The hardware is the control board, and the inverter and motor models implemented in Simulik are located in the real-time simulator. The control algorithm is implemented by the FPGA control board, which includes a PWM interrupt service routine with a frequency of 10 kHz, harmonic injection and position detection sensorless algorithm.

Sensorless speed control of permanent magnet synchronous motor using square-root extended kalman filter (제곱근 확장 칼만 필터에 의한 영구자석 동기전동기의 센서리스 속도제어)

  • Moon, Cheol;Kwon, Young-Ahn
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.40 no.3
    • /
    • pp.217-222
    • /
    • 2016
  • This study investigates the design, analysis, and implementation of the square-root extended Kalman filter by using an algorithm derived by combining the Potter or Carlson algorithm with the modified Gram-Schmidt algorithm, for sensorless speed control of a permanent-magnet synchronous motor. The sensitivity of the Kalman filter to round-off errors is a well-known problem. A possible way to address this limitation is by combining the square-root concept and Kalman filter that can improve the numerical performance and solve instability-related problems such as divergence. This paper presents the design and analysis of the implementation of such a square-root extended Kalman filter. To demonstrate the performance of the proposed filter, experimental results under several operating conditions, such as high and low speeds, reversal rotation, detuned parameters and load test, have been analyzed. Further, code sizes and operation times have been compared. Experimental results establish the performance of the proposed square-root extended Kalman filter-based estimation technique for sensorless speed control of a permanent-magnet synchronous motor.

Speed Sensorless Vector Control of Induction Motor Using MATLAB/SIMULINK and dSPACE DS1104 (MATLAB/SIMULINK와 dSPACE DS1104를 이용한 유도 전동기의 속도 센서리스 벡터제어)

  • Lee, Dong-Min;Lee, Yong-Suk;Ji, Jun-Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.2
    • /
    • pp.212-218
    • /
    • 2007
  • This paper presents a implementation of speed sensorless vector control of induction motor using MATLAB/SIMULINK and dSPACE DS1104. Proposed flux estimation algorithm, which utilize the combination of the voltage model based on stator equivalent model and the current model based on rotor equivalent model, enables stable estimation of rotor flux. Proposed rotor speed estimation algorithm utilizes the estimated flux. And the estimated rotor speed is used to speed control of induction motor. Overall system consists of speed controller, current controller, and flux controller using the most general PI controller. Speed sensorless vector control algorithm is implemented as block diagrams using MATLAB/SIMULINK. And realtime control is performed by dSPACE DS1104 control board and Real-Time-Interface(RTI).

  • PDF

Sensorless Control of High-speed Type PMSM in Wide Speed Range using an Iterative Adaptive Flux Observer (반복 적응자속관측기를 이용한 초고속 영구자석형 동기전동기의 전영역 센서리스 제어)

  • Kim, Jong-Moo;Choi, Jeong-Won;Lee, Suk-Gyu
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.14 no.2
    • /
    • pp.168-175
    • /
    • 2009
  • This paper proposes an enhanced algorithm for sensorless control of 45,000rpm/22kw type Permanent Magnetic Synchronous Motor (PMSM) with air-foil bearing. The proposed algorithm is based on iterative adaptive flux observer for sensorless control of the motor in wide speed range by on-line estimating angle and velocity of rotor. Simulation error between actual and estimated angle of rotor is analyzed to enhance characteristics of frequency response of conventional adaptive flux observer, which results in stable response in wide range of speed. Using the iteration number for stable phase-delay characteristics, the observer enhances the dynamic characteristics of the observer within current control period. The experiment results show the reliable performance of the proposed algorithm through starting to high speed operating range.

A Position Sensorless Control System of SRM using Neural Network (신경회로망을 이용한 위치센서 없는 스위치드 릴럭턴스 전동기의 제어시스템)

  • 김민회;백원식;이상석;박찬규
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.246-252
    • /
    • 2004
  • This paper presents a position sensorless control system of Switched Reluctance Motor (SRM) using neural network. The control of SRM depends on the commutation of the stator phases in synchronism with the rotor position. The position sensing requirement increases the overall cost and complexity. In this paper, the current-flux-rotor position lookup table based position sensorless operation of SRM is presented. Neural network is used to construct the current-flux-rotor position lookup table, and is trained by sufficient experimental data. Experimental results for a 1-hp SRM is presented for the verification of the proposed sensorless algorithm.

Sensorless Drive of Brushless DC Motors Using an Unknown Input Observer (미지입력 관측기를 이용한 BLDC 전동기 센서리스 드라이브에 대한 연구)

  • Ryu, Ji-Su;Hyun, Dong-Seok;Kim, Tae-Sung
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.11 no.1
    • /
    • pp.65-71
    • /
    • 2006
  • In this paper, a novel motor control method is proposed to improve the performance of sensorless drive of BLDC motors. In the terminal voltage sensing method, which is a great portion of sensorless control, a precise rotor position cannot be obtained when excessive input is applied to the drive during synchronous operation mode. Especially in the transient state, the response characteristic decreases. To cope with this problem, the unknown input (back-EMF) is modelled as the additional state of system in this paper. Taking into account the disturbance adopted by the back-EMF, the observer can be obtained by the augmented system equation. An algorithm to detect the back-EMF of the BLDC motor using the state observer is constructed. As a result, the novel sensorless drive of BLDC motors that can strictly estimate rotor position and speed is proposed.

A High-Performance Position Sensorless Motion Control System of Induction Motor with Direct Torque Control (직접 토크제어에 의한 위치검출기 없는 유도전동기의 고성능 모션제어 시스템)

  • Kim, Min-Hoe;Kim, Nam-Hun;Baek, Won-Sik
    • The Transactions of the Korean Institute of Electrical Engineers B
    • /
    • v.51 no.7
    • /
    • pp.399-405
    • /
    • 2002
  • This paper presents an implementation of digital high-performance Position sensorless motion control system of an induction motor drives with Direct Torque Control(DTC). The system consist of closed loop stator flux and torque observer, speed and torque estimators, two hysteresis controller, optimal switching look-up table, IGBT voltage source inverter, and TMS320C31 DSP board. The stator flux observer is based on the combined current and voltage model with stator flux feedback adaptive control of which inputs are current and voltage sensed on motor terminal for wide speed range. The speed observer is using the model reference adaptive system(MRAS) with rotor flux linkages for speed turning signal. The simulation and experimental results are provided to evacuate the consistency and the performance of the suggested position sensorless control algorithm. The developed position sensorless system are shown a good motion control response characteristic and high performance features using 2.2[kw] general purposed induction motor.