• Title/Summary/Keyword: sensor error

Search Result 2,224, Processing Time 0.027 seconds

A Landmark Based Localization System using a Kinect Sensor (키넥트 센서를 이용한 인공표식 기반의 위치결정 시스템)

  • Park, Kwiwoo;Chae, JeongGeun;Moon, Sang-Ho;Park, Chansik
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.1
    • /
    • pp.99-107
    • /
    • 2014
  • In this paper, a landmark based localization system using a Kinect sensor is proposed and evaluated with the implemented system for precise and autonomous navigation of low cost robots. The proposed localization method finds the positions of landmark on the image plane and the depth value using color and depth images. The coordinates transforms are defined using the depth value. Using coordinate transformation, the position in the image plane is transformed to the position in the body frame. The ranges between the landmarks and the Kinect sensor are the norm of the landmark positions in body frame. The Kinect sensor position is computed using the tri-lateral whose inputs are the ranges and the known landmark positions. In addition, a new matching method using the pin hole model is proposed to reduce the mismatch between depth and color images. Furthermore, a height error compensation method using the relationship between the body frame and real world coordinates is proposed to reduce the effect of wrong leveling. The error analysis are also given to find out the effect of focal length, principal point and depth value to the range. The experiments using 2D bar code with the implemented system show that the position with less than 3cm error is obtained in enclosed space($3,500mm{\times}3,000mm{\times}2,500mm$).

A Method and System to Compensate Vertical Component of 3-Dimensional Magnetic Field Sensor Using The Earth's Field (지구자계를 이용한 3축 자계센서의 수직성분자계 보정방법 및 장치)

  • Jung Young-Yoon;Lim Dae-Young;Ryoo Young-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.16 no.3
    • /
    • pp.297-302
    • /
    • 2006
  • In this paper, a method and system to compensate vertical component of 3-dimensional magnetic field sensor using the earth's field was described. Output of magnetic field sensor have a output offset that is generated setting angle error of magnetic sensor and gain error. Thus, to using the magnetic field sensor, it must be compensated. The compensation of magnetic field sensor is required at shield space. However, using the earth's field, output offset of the sensor can be simply compensated. And, we designed system for compensation of the sensor. The proposed method and system are verified usefulness through experimental.

Quantification of Acoustic Pressure Estimation Error due to Sensor and Position Mismatch in Planar Acoustic Holography (평면 음향 홀로그래피에서 센서간 특성 차이와 측정 위치의 부정확성에 의한 음압 추정 오차의 정량화)

  • 남경욱;김양한
    • Journal of KSNVE
    • /
    • v.8 no.6
    • /
    • pp.1023-1029
    • /
    • 1998
  • When one attempts to construct a hologram. one finds that there are many sources of measurement errors. These errors are even amplified if one predicts the pressures close to the sources. The pressure estimation errors depend on the following parameters: the measurement spacing on the hologram plane. the prediction spacing on the prediction plane. and the distance between the hologram and the prediction plane. This raper analyzes quantitatively the errors when these are distributed irregularly on the hologram plane The sensor mismatch and inaccurate measurement location. position mismatch. are mainly addressed. In these cases. one can assume that the measurement is a sample of many measurement events. The bias and random error are derived theoretically. Then the relationship between the random error amplification ratio and the parameters mentioned above is examined quantitatively in terms of energy.

  • PDF

Development of a Ground Speed Monitoring System for Aerial Application (항공방제용 지면속도 감시장치의 개발)

  • 구영모;알빈워맥
    • Journal of Biosystems Engineering
    • /
    • v.25 no.3
    • /
    • pp.233-240
    • /
    • 2000
  • A commercially available Doppler radar was modified and evaluated for on-board monitoring of ground speed. The radar output was corrected for pitch angle of aircraft based on the output of an electrolytic tilt sensor. The effects of aircraft speed, height and mounting angle on error in the ground speed were evaluated. The speed error decreased with an increase of the mounting angle since the radar contact angle with respect to the ground approached to the mounting angle. The error increased with an increase of the nominal aircraft speed. The altitude insignificantly affected the speed error. The Doppler radar provided acceptable percent errors within 5% in most measurements. The error can be reduced within ${\pm}$1.5% by increasing the mounting angle ($43^{\circ}$). The error of -3.8% at the mounting angle of $29^{\circ}$could be reduced by adjusting the mounting angle with respect to the radar contact angle.

  • PDF

Sensor Structure and Signal Processing System for Precision Optical Displacement Measurement (초정밀 광학식 변위 측정을 위한 센서 구호 밀 신호 처리 시스템)

  • O, Se-Baek;Kim, Gyeong-Chan;Kim, Su-Hyeon;Gwak, Yun-Geun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.18 no.8
    • /
    • pp.40-47
    • /
    • 2001
  • Optical measurement methods make it possible to detect object displacements with high resolution and noncontact measurements. Also, they are very robust against EMI noises and have long operation range. An optical triangulation sensor is one of widely used displacement measurement sensors for its sub-micron resolution, fast response, simple structure, and low cost. However. there are several errors caused by inclinations of a surface. speckle effects, power fluctuations of light sources, and noises of detectors. In this paper, in order to minimize error effects, we performed error analysis and proposed a new structure. Then, we setup a new modeling method and verify it through simulations and experiments. Based on the new model. we propose a new sensor structure and establish design criteria. Finally, we design a signal processing system to overcome a resolution-limited problem of light detectors. The resolution of the proposed system is 0.2${\mu}{\textrm}{m}$ in 5mm operating range.

  • PDF

An Adaptive FEC Code Control Algorithm for Mobile Wireless Sensor Networks

  • Ahn Jong-Suk;Hong Seung-Wook;Heidemann John
    • Journal of Communications and Networks
    • /
    • v.7 no.4
    • /
    • pp.489-498
    • /
    • 2005
  • For better performance over a noisy channel, mobile wireless networks transmit packets with forward error correction (FEC) code to recover corrupt bits without retransmission. The static determination of the FEC code size, however, degrades their performance since the evaluation of the underlying channel state is hardly accurate and even widely varied. Our measurements over a wireless sensor network, for example, show that the average bit error rate (BER) per second or per minute continuously changes from 0 up to $10^{-3}$. Under this environment, wireless networks waste their bandwidth since they can't deterministically select the appropriate size of FEC code matching to the fluctuating channel BER. This paper proposes an adaptive FEC technique called adaptive FEC code control (AFECCC), which dynamically tunes the amount of FEC code per packet based on the arrival of acknowl­edgement packets without any specific information such as signal to noise ratio (SNR) or BER from receivers. Our simulation experiments indicate that AFECCC performs better than any static FEC algorithm and some conventional dynamic hybrid FEC/ARQ algorithms when wireless channels are modeled with two-state Markov chain, chaotic map, and traces collected from real sensor networks. Finally, AFECCC implemented in sensor motes achieves better performance than any static FEC algorithm.

Modified TCP with Post-Checksum Field and Limited Error Control Algorithm for Memory-limited Tiny Sensor Node (메모리 크기 제약이 있는 센서 노드에서의 포스트 체크섬과 제한된 오류제어 알고리즘 연구)

  • Oh, Jong-Taek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.12 no.4
    • /
    • pp.141-145
    • /
    • 2012
  • In a Ubiquitous sensor network environment, the sensor node is in general small and low price, and operating with power limited battery. The reliable TCP/IP protocol is used for transmitting sensed data from the sensor node. A new method was proposed in order to overcome the limitation of small embedded memory, but it is difficult to use for the case of frame error. In this paper, a new algorithm is proposed to manage the receiving frame error or loss, and it is appropriate to the sensor network to send sensed data periodically.

Target Tracking Control of a Quadrotor UAV using Vision Sensor (비전 센서를 이용한 쿼드로터형 무인비행체의 목표 추적 제어)

  • Yoo, Min-Goo;Hong, Sung-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.40 no.2
    • /
    • pp.118-128
    • /
    • 2012
  • The goal of this paper is to design the target tracking controller for a quadrotor micro UAV using a vision sensor. First of all, the mathematical model of the quadrotor was estimated through the Prediction Error Method(PEM) using experimental input/output flight data, and then the estimated model was validated via the comparison with new experimental flight data. Next, the target tracking controller was designed using LQR(Linear Quadratic Regulator) method based on the estimated model. The relative distance between an object and the quadrotor was obtained by a vision sensor, and the altitude was obtained by a ultra sonic sensor. Finally, the performance of the designed target tracking controller was evaluated through flight tests.

Packet-Level Scheduling for Implant Communications Using Forward Error Correction in an Erasure Correction Mode for Reliable U-Healthcare Service

  • Lee, Ki-Dong;Kim, Sang-G.;Yi, Byung-K.
    • Journal of Communications and Networks
    • /
    • v.13 no.2
    • /
    • pp.160-166
    • /
    • 2011
  • In u-healthcare services based on wireless body sensor networks, reliable connection is very important as many types of information, including vital signals, are transmitted through the networks. The transmit power requirements are very stringent in the case of in-body networks for implant communication. Furthermore, the wireless link in an in-body environment has a high degree of path loss (e.g., the path loss exponent is around 6.2 for deep tissue). Because of such inherently bad settings of the communication nodes, a multi-hop network topology is preferred in order to meet the transmit power requirements and to increase the battery lifetime of sensor nodes. This will ensure that the live body of a patient receiving the healthcare service has a reduced level of specific absorption ratio (SAR) when exposed to long-lasting radiation. We propose an efficientmethod for delivering delay-intolerant data packets over multiple hops. We consider forward error correction (FEC) in an erasure correction mode and develop a mathematical formulation for packet-level scheduling of delay-intolerant FEC packets over multiple hops. The proposed method can be used as a simple guideline for applications to setting up a topology for a medical body sensor network of each individual patient, which is connected to a remote server for u-healthcare service applications.

Active Peg-in-hole of Chamferless Parts Using Multi-sensors (다중센서를 사용한 챔퍼가 없는 부품의 능동적인 삽입작업)

  • Jeon, Hun-Jong;Kim, Kab-Il;Kim, Dae-Won;Son, Yu-Seck
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.410-413
    • /
    • 1993
  • Chamferless peg-in-hole process of the cylindrical type parts using force/torque sensor and vision sensor is analyzed and simulated in this paper. Peg-in-hole process is classified to the normal mode (only position error) and tilted mode(position and orientation error). The tilted mode is sub-classified to the small and the big tilted mode according to the relative orientation error. Since the big tilted node happened very rare, most papers dealt with only the normal or the small tilted mode. But the most errors of the peg-in-hole process happened in the big tilted mode. This problem is analyzed and simulated in this paper using the force/torque sensor and vision senor. In the normal mode, fuzzy logic is introduced to combine the data of the force/torque sensor and vision sensor. Also the whole processing algorithms and simulations are presented.

  • PDF