• 제목/요약/키워드: sensor calibration

검색결과 730건 처리시간 0.026초

4채널 원통형 정전용량 변위센서의 자동ㆍ정밀 검보정 (Automatic and precise calibration of 4-channel cylindrical capacitive displacement sensor)

  • 김종혁;김일해;박만진;장동영;한동철;백영종
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2004년도 춘계학술대회 논문집
    • /
    • pp.387-393
    • /
    • 2004
  • General purpose of cylindrical capacitive displacement sensor(CCS) is measuring run-out motion and deflection of rotor. If CCS has narrow sensing range, its sensitivity coefficients must be calibrated precisely. And x, y component of CCS output can be coupled. In this research, CCS calibration procedure is automated with automatic calibration program and PC-controlled stage. And, coupled-terms of CCS signals were removed and the errors between measured position and mapped CCS signal were reduced obviously by sensitivity matrix that linearly.

  • PDF

GMDH 알고리즘에 의한 카메라 보정 모델의 비선형성 학습 (Learning the nonlinearity of a camera calibration model using GMDH algorithm)

  • 김명환;도용태
    • 센서학회지
    • /
    • 제14권2호
    • /
    • pp.109-115
    • /
    • 2005
  • Calibration is a prerequisite procedure for employing a camera as a 3D sensor in an automated machines like robots. As accurate sensing is possible only when the vision sensor is calibrated accurately, many different approaches and models have been proposed for increasing calibration accuracy. Particularly an important factor which greatly affects the calibration accuracy is the nonlinearity in the mapping between 3D world and corresponding 2D image. In this paper GMDH algorithm is used to learn the nonlinearity without physical modelling. The technique proposed can be effective in various situations where the levels of noises and characteristics of nonlinear distortion are different. In simulations and an experiment, the proposed technique showed good and reliable results.

인체 동작 인식을 위한 가속도 센서의 신호 처리 (Signal processing of accelerometers for motion capture of human body)

  • 이지홍;하인수
    • 제어로봇시스템학회논문지
    • /
    • 제5권8호
    • /
    • pp.961-968
    • /
    • 1999
  • In this paper we handle a system that transform sensor data to sensor information. Sensor informations from redundant accelerometers are manipulated to represent the configuration of objects carrying sensors. Basic sensor unit of the proposed systme is composed of 3 accelerometers that are aligned along x-y-z coordination axes of motion. To refine the sensor information, at first the sensor data are fused by geometrical optimization to reduce the variance of sensor information. To overcome the error caused from inexact alignment of each sensor to the coordination system, we propose a calibration technique that identifies the transformation between the coordinate axes and real sensor axes. The calibration technique make the sensor information approach real value. Also, we propose a technique that decomposes the accelerometer data into motion acceleration component and gravity acceleration component so that we can get more exact configuration of objects than in the case of raw sensor data. A set of experimental results are given to show the usefulness of the proposed method as well as the experiments in which the proposed techniques are applied to human body motion capture.

  • PDF

Sensitivity Calibration 루틴 수행시 Tilt에 의한 방위각 측정 오차의 분석 (Analysis of Measured Azimuth Error on Sensitivity Calibration Routine)

  • 우광준;강수민
    • 전자공학회논문지SC
    • /
    • 제48권1호
    • /
    • pp.1-8
    • /
    • 2011
  • MR 센서에 의해 지구자기장의 세기를 측정하여 방위각을 결정하는 전자 Compass의 정밀도는 MR센서 및 OP-Amp.의 온도 Drift, DC Offset등 소자에 의한 오차, 측정주변 자성체에 의한 자기장의 왜곡, 및 Compass Tilt에 의한 오차 등의 영향을 받는다. 본 연구에서는 Set/Reset Pulse 방법에 의해 MR 센서 및 OP-Amp의 온도 Drift 및 DC Offset에 의한 오차를 해결하였고, 주변 자성체에 의한 자기장의 왜곡에 의한 오차를 Hard-Iron Calibration 루틴 수행에 의해 보상하였으며, Compass Tilt에 의한 오차를 Euler Rotational Equation에 의해 보상할 수 있는 3축 MR 센서 및 3축 Accelerometer를 기반으로 하는 전자 Compass 를 설계하였다. 특히 이와 샅이 설계한 전자 Compass를 가지고 3측 MR 센서의 서로 다른 Sensitivity와 OP-Amp.의 서로 다른 Gain등을 규준화하기 위한 Sensitivity Calibration 루틴 수행 시 Tilt의 발생으로 야기되는 오차를 정량적으로 분석하였으며, 이를 바탕으로 $1^{\circ}$정도(精度) Compass를 설계할 수 있었다.

멀티모달 센서 시스템용 유전자 알고리즘 보정기 및 PnP 플랫폼 (Genetic Algorithm Calibration Method and PnP Platform for Multimodal Sensor Systems)

  • 이재학;김병수;박현문;김동순;권진산
    • 한국전자통신학회논문지
    • /
    • 제14권1호
    • /
    • pp.69-80
    • /
    • 2019
  • 본 논문은 PnP(plug and play) 기술을 지원하는 멀티모달 센서 플랫폼을 제안하였다. PnP 기술은 센서 모듈이 연결이 되면 자동으로 인식하여 응용프로그램을 사용하여 손쉬운 센서 제어를 제공한다. 멀티모달 플랫폼을 검증하기 위해, 펌웨어를 사용하여 센서를 실험하였다. 센서 모듈이 연결되면 펌웨어는 센서 모듈을 인지하여 센서 데이터를 읽는다. 따라서, PnP 기술 지원을 통해 소프트웨어 설정 없이 자동으로 센서를 연동할 수 있게 된다. 측정한 센서 데이터는 다양한 왜곡에 의해 오류를 가지고 있다. 따라서, 본 논문은 다항식 계산을 통해 센서의 오류를 보상하고자 한다. 다항식 보상기의 계수를 찾기 위해 유전자 알고리즘 방식을 사용하였다. 실험결과 악조건에서 97%의 오류를 제거하였다. 또한, 제안하는 플랫폼은 다양한 프로토콜의 센서를 지원하기 위해 UART, I2S, I2C, SPI, GPIO를 지원한다.

자동 보정형 디지털 제어기 설계에 관한 연구 (A Study on the Design of Digital Controllers with Automatic Calibration)

  • 나승유;박민상
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 1998년도 추계종합학술대회 논문집
    • /
    • pp.413-416
    • /
    • 1998
  • Sensitivity and calibration considerations are most important in the design and implementation of real control systems. Ideally parameter changes due to various causes should not appreciably affect the system's performances. But all the values of physical components of the plants and controllers as well as the relevant environmental conditions change in time, thus the output performance can be deteriorated during the operating span of the system. Naturally the duty of calibration or the prevention of performance deterioration due to excessive component sensitivity should be provided to the control system. In this paper, we propose a digital controller which has the capability of calibration and gain adjustment as well as the execution of control law. Specifically the problems of gain adjustment and offset calibration in the light source and CdS sensor module for position measurement in a flexible link system are considerably resolved. The parameters of measurement module are prone to change due to environmental brightness conditions resulting in poor steady state performance of the overall control system. Thus a proper method is necessary to provide correction to the changed values of gain and offset in the position measurement module. The proposed controller, whenever necessary, measures the open-loop characteristics, andthen calculates the offset and sensor gain correction values based on the prepared standard measurements. It is applied to the control of a flexible link system with the gain and offset calibration porblems in the light sensor module for position to show the applicability.

  • PDF

Gap 센서를 이용한 가공물의 표면특성 분석 (Analysis of Surface Profile using Gap Sensor)

  • 송무건;유송민
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 2000년도 추계학술대회논문집 - 한국공작기계학회
    • /
    • pp.304-308
    • /
    • 2000
  • Surface roughness measurement system with capacitance type gap sensor. Tentative result from the calibration measurement showed the potential applicability of the sensor to the processed specimen. In order to test the sensitivity of the measurement system, several parameters including valley depth, width of the specimen have been changed. Effect of the charge area between sensor and specimen surface has been also analyzed.

  • PDF

대류방식을 이용한 열유속센서의 검정에 관한 연구 (A Study on Calibration of Heat Flux Sensor by using Convective Heat Transfer)

  • 양훈철;송철화;김무환
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2004년도 춘계학술대회
    • /
    • pp.1358-1363
    • /
    • 2004
  • The objective of this work is to propose calibration facility in which a thin film type heat flux sensor can be calibrated under convective flow condition by using a small wind tunnel with the constant temperature plate condition. A small wind tunnel has been built to produce a boundary layer shear flow above a constant temperature copper plate. 12-independent copper blocks, thin film heaters, insulators and temperature controllers were used to keep the temperature of flat plate constant at a specified temperature. Three commercial thin film-type heat flux sensors were tested. Convective calibrations of these gages were performed over the available heat flux range of $1.4{\sim}2.5kW/m^2$. The uncertainty in the heat flux measurements in the convective-type heat flux calibration facility was ${\pm}2.07%$. Non-dimensional sensitivity is proposed to compare the sensitivity calibrated by manufacturer and that of experiment conducted in this study.

  • PDF

The Development of a Wearable Prototype to Measure Clothing Pressure through Sensor Calibration Procedure

  • Jin, Heejae;Lee, Hyojeong
    • 한국의류학회지
    • /
    • 제46권5호
    • /
    • pp.827-835
    • /
    • 2022
  • Clothing pressure is considered the essential factor affecting the comfort of clothing, so it is crucial that it is measured precisely. The purpose of this study is to construct a prototype using the Adafruit Flora as the Arduino system, which can be used as a wearable framework for easy, low-cost, and precise clothing pressure measurement. The study also aims to determine how best to conduct the procedure of sensor calibration. To optimize the accuracy of the sensors, the calibration procedure was implemented using mathematical methods that combined polynomial and exponential regression in a hybrid approach. The prototype can easily measure clothing pressure even during active movements, as seen in the detection of stable signals. In addition, since the system was specifically proposed as a wearable patch that can be easily attached and removed as necessary, it can also be used to standardize the value of clothing pressure in each movement.