• Title/Summary/Keyword: sensor array optimization

Search Result 22, Processing Time 0.026 seconds

Sources separation of passive sonar array signal using recurrent neural network-based deep neural network with 3-D tensor (3-D 텐서와 recurrent neural network기반 심층신경망을 활용한 수동소나 다중 채널 신호분리 기술 개발)

  • Sangheon Lee;Dongku Jung;Jaesok Yu
    • The Journal of the Acoustical Society of Korea
    • /
    • v.42 no.4
    • /
    • pp.357-363
    • /
    • 2023
  • In underwater signal processing, separating individual signals from mixed signals has long been a challenge due to low signal quality. The common method using Short-time Fourier transform for spectrogram analysis has faced criticism for its complex parameter optimization and loss of phase data. We propose a Triple-path Recurrent Neural Network, based on the Dual-path Recurrent Neural Network's success in long time series signal processing, to handle three-dimensional tensors from multi-channel sensor input signals. By dividing input signals into short chunks and creating a 3D tensor, the method accounts for relationships within and between chunks and channels, enabling local and global feature learning. The proposed technique demonstrates improved Root Mean Square Error and Scale Invariant Signal to Noise Ratio compared to the existing method.

Optical System Design for Real-Time 3-Dimension Ophthalmoscope (실시간 3차원 검안경의 광학설계)

  • Lee, Soak-Hee;Yang, Yun-Sik;Choe, Oh-Mok;Sim, Sang-Hyun;Doo, Ha-Young
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.8 no.1
    • /
    • pp.35-39
    • /
    • 2003
  • The display technology on the retina is the key role in inspecting the condition of the patients. 2-dimensional retina image is widely used in the eye examination as of today. Recently, 3-dimensional retina image ones have been introduced to this area, but the quality of the image is not fully satisfied to the operator. For the purpose of developing 3-D retina imaging instrument, the optimization of a 3-D retina imaging system using Code-V tool was investigated in this thesis. He-Ne laser having the wavelength 632.8 nm was used to make a power source to detect the retina. Several lenses and mirrors installed on sledge which were developed to perform focus control on 3-D device were designed to make a beam focusing and direct line. Polygon scanner having 24 mirror facets and galvanometer making tilting movement were utilized to make a 2-D laser plane. Also, design of eye ball had been fulfilled to see the focus of the 2-D plane. Reflected ray from retina detected on the sensor array with the same path. All cognitive components were optimized for aberration correction in order to focus on retina. Results of optimization were compared to those of initial designed optics system. On the basis of above results, the result of third aberration has been corrected to stable values to the optical system. MTF evaluating the resolution of an image has been closely correlated to the diffraction limit and PSF indicating the strength distribution of an image has shown the SR value as 0.9998 having high performance. The possibility of new and powerful 3-D retina image instrument was verified by simulating each component of the instrument by Code-V.

  • PDF