• 제목/요약/키워드: sensor and actuator data

검색결과 85건 처리시간 0.023초

An Intelligent Wireless Sensor and Actuator Network System for Greenhouse Microenvironment Control and Assessment

  • Pahuja, Roop;Verma, Harish Kumar;Uddin, Moin
    • Journal of Biosystems Engineering
    • /
    • 제42권1호
    • /
    • pp.23-43
    • /
    • 2017
  • Purpose: As application-specific wireless sensor networks are gaining popularity, this paper discusses the development and field performance of the GHAN, a greenhouse area network system to monitor, control, and access greenhouse microenvironments. GHAN, which is an upgraded system, has many new functions. It is an intelligent wireless sensor and actuator network (WSAN) system for next-generation greenhouses, which enhances the state of the art of greenhouse automation systems and helps growers by providing them valuable information not available otherwise. Apart from providing online spatial and temporal monitoring of the greenhouse microclimate, GHAN has a modified vapor pressure deficit (VPD) fuzzy controller with an adaptive-selective mechanism that provides better control of the greenhouse crop VPD with energy optimization. Using the latest soil-matrix potential sensors, the GHAN system also ascertains when, where, and how much to irrigate and spatially manages the irrigation schedule within the greenhouse grids. Further, given the need to understand the microclimate control dynamics of a greenhouse during the crop season or a specific time, a statistical assessment tool to estimate the degree of optimality and spatial variability is proposed and implemented. Methods: Apart from the development work, the system was field-tested in a commercial greenhouse situated in the region of Punjab, India, under different outside weather conditions for a long period of time. Conclusions: Day results of the greenhouse microclimate control dynamics were recorded and analyzed, and they proved the successful operation of the system in keeping the greenhouse climate optimal and uniform most of the time, with high control performance.

이종 통신망에 연결된 네트워크 기반 액추에이터 제어 (Actuator Control based on Interconnected Heterogeneous Networks)

  • 김나연;문찬우
    • 한국인터넷방송통신학회논문지
    • /
    • 제17권2호
    • /
    • pp.57-62
    • /
    • 2017
  • 차량의 전자화가 진행됨에 따라 차량내 전자제어장치의 사용이 증가하고 있으며 각 제어장치들은 급증하는 정보의 처리를 위해 차량 통신 네트워크에 연결되고 있다. 본 논문에서는 FlexRay-CAN의 이종 통신망에 연결된 액추에이터의 네트워크 기반 제어를 위한 FlexRay-CAN 게이트웨이를 구현하고 FlexRay 슬롯의 2분법을 사용하여 할당된 최소한의 FlexRay 프레임 ID (Frame ID)를 사용하여 필요한 센서 정보를 제어 안정성을 보장하는 최대 허용 지연시간 이내로 전송하기 위한 패킹 알고리즘 제안한다. 접촉 힘 센서 정보를 대상으로 패킹맵을 구성하였으며 제안된 알고리즘은 이종의 네트워크에 분산되어 있는 시스템의 제어에 적용할 수 있다.

Scheduling algirithm of data sampling times in the real-time distributed control systems

  • Hong, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1992년도 한국자동제어학술회의논문집(국제학술편); KOEX, Seoul; 19-21 Oct. 1992
    • /
    • pp.112-117
    • /
    • 1992
  • The Real-time Distributed Control Systems(RDCS) consist of several distributed control processes which share a network medium to exchange their data. Performance of feedback control loops in the RDCS is subject to the network-induced delays from sensor to controller and from controller to actuator. The network-induced delays are directly dependent upon the data sampling times of the control components which share a network medium. In this study, a scheduling algorithm of determining data sampling times is developed using the window concept, where the sampling data from the control components dynamically share a limited number of windows.

  • PDF

Hardware Implementation of High-Speed Active Vibration Control System Based on DSP320C6713 Processor

  • Kim, Dong-Chan;Choi, Hyeung-Sik;Her, Jae-Gwan;You, Sam-Sang
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제32권3호
    • /
    • pp.437-445
    • /
    • 2008
  • This paper deals with the experimental assessment of the vibration suppression of the smart structures. First. we have presented a new high-speed active control system using the DSP320C6713 microprocessor. A peripheral system developed is composed of a data acquisition system, N/D and D/A converters, piezoelectric (PZT) actuator/sensors, and drivers for fast data processing. Next, we have tested the processing time of the peripheral devices, and provided the corresponding test results. Since fast data processing is very important in the active vibration control of the structures, we have focused on achieving the fast loop times of the control system. Finally, numerous experiments were carried out on the aluminum plate to validate the superior performance of the vibration control system at different control loop times.

Autonomous hardware development for impedance-based structural health monitoring

  • Grisso, Benjamin L.;Inman, Daniel J.
    • Smart Structures and Systems
    • /
    • 제4권3호
    • /
    • pp.305-318
    • /
    • 2008
  • The development of a digital signal processor based prototype is described in relation to continuing efforts for realizing a fully self-contained active sensor system utilizing impedance-based structural health monitoring. The impedance method utilizes a piezoelectric material bonded to the structure under observation to act as both an actuator and sensor. By monitoring the electrical impedance of the piezoelectric material, insights into the health of the structured can be inferred. The active sensing system detailed in this paper interrogates a structure utilizing a self-sensing actuator and a low cost impedance method. Here, all the data processing, storage, and analysis is performed at the sensor location. A wireless transmitter is used to communicate the current status of the structure. With this new low cost, field deployable impedance analyzer, reliance on traditional expensive, bulky, and power consuming impedance analyzers is no longer necessary. A complete power analysis of the prototype is performed to determine the validity of power harvesting being utilized for self-containment of the hardware. Experimental validation of the prototype on a representative structure is also performed and compared to traditional methods of damage detection.

1자유도의 압전 엑추에이터를 위한 IEEE 1451.4 TEDS 제안 (The Proposal of IEEE 1451.4 for Piezoelectric Actuator of 1 degree of Freedom)

  • 김정도;김동진;홍철호;정우석
    • 제어로봇시스템학회논문지
    • /
    • 제13권10호
    • /
    • pp.1018-1024
    • /
    • 2007
  • It is important to define a standard method to store basic sensor information, such as the type and the structure for an piezoelectric actuator and there is no such method defined in the IEEE 1451.4 transducer electronic data sheet (TEDS) so far. The major challenge is to choose a suitable standard template that can be used with actuators for piezoelectric devices. In this paper, we propose a new template TEDS and the structure of interface for IEEE 1451.4 for piezoelectric actuators.

센서와 작동기를 고려한 자기베어링 시스템의 식별에 관한 연구 (A Study on System Identification of Active Magnetic Bearing Rotor System Considering Sensor and Actuator Dynamics)

  • 김찬중;안형준;한동철
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.1458-1463
    • /
    • 2003
  • This paper presents an improved identification algorithm of active magnetic bearing rotor systems considering sensor and actuator dynamics. An AMB rotor system has both real and complex poles so that it is very hard to identify them together. In previous research, a linear transformation through a fictitious proportional feedback was used in order to shift the real poles close to the imaginary axis. However, the identification result highly depends on the fictitious feedback gain, and it is not easy to identify the additional dynamics including sensor and actuators at the same time. First, this paper discusses the necessity and a selection criterion of the fictitious feedback gain. An appropriate feedback gain minimizes dominant SVD(Singular Value Decomposition) error through maximizing rank deficiency. Second, more improvement in the identification is achieved through separating the common additional dynamics in all elements of frequency response matrix. The feasibility of the proposed identification algorithm is proved with two theoretical AMB rotor models. Finally, the proposed scheme is compared with previous identification methods using experimental data, and a great improvement in model quality and large amount of time saving can be achieved with the proposed method.

  • PDF

C-EPS (C-type Electric Power Steering) 시뮬레이터 설계 및 제어 알고리즘 개발 (Design of C-EPS (Column type - Electric Power Steering) Simulator and Development of Control Algorithm)

  • 박명욱;문희창;김정하
    • 제어로봇시스템학회논문지
    • /
    • 제16권6호
    • /
    • pp.566-571
    • /
    • 2010
  • EPS (Electric Power Steering) is important device for improving vehicle's dynamics and static performances. This paper deals with simulator design for C-EPS (Colum type-EPS), development assist and returnability control algorithm. First, C-EPS system model was simply designed because EPS system is complex control system that has many unknown variables. These parameters were simplified through assumptions. Second, C-EPS simulator was designed for development of control algorithm. This simulator has SAS (Steering Angle Sensor), dual torque sensor, dual load cell for measuring rack force, dual linear actuator for generating tire force and Data Acquisition System. Using this simulator, control methods ware tested. Third, control algorithm was designed for torque assist and returnability. Assist torque map and returnability torque map were found by lots of simulation test. These torque maps were tuned for EPS actuator control. The simulation result was compared with non-EPS system result. In this research, the C-EPS simulator was designed for development of control algorithm about torque assistant and returnability. Using this simulator, control algorithm was improved.

인텔리전트 컨포넌트 (Intelligent Conponent) (Intelligent Conponent)

  • 미즈타까준;서길진
    • 대한설비공학회:학술대회논문집
    • /
    • 대한설비공학회 2008년도 하계학술발표대회 논문집
    • /
    • pp.103-108
    • /
    • 2008
  • Automatic control makes the air-handling unit go into operation and determines the functions of high-efficient and energy-saving machines. Yamatake, an automatic control system manufacturer, have expanded fault detection and diagnosis, and data volumes so as to achieve higher technology in control by developing a sensor which makes field data visible, an actuator and Intelligent Conponent. This study, thus, focuses on applications for saving energy with Intelligent Conponent and goes in for easing global warming by creating future field data-based applications.

  • PDF

과수원 환경에서의 방제기 무인주행 기술 개발 (Development of Unmanned Driving Technologies for Speed Sprayer in Orchard Environment)

  • 이송;강동엽;이혜민;안수용;권우경;정윤수
    • 대한임베디드공학회논문지
    • /
    • 제15권6호
    • /
    • pp.269-279
    • /
    • 2020
  • This paper presents the design and implementation of embedded systems and autonomous path generation for autonomous speed sprayer. Autonomous Orchard Systems can be divided into embedded controller and path generation module. Embedded controller receives analog sensor data, on/off switch data and control linear actuator, break, clutch and steering module. In path generation part, we get 3D cloud point using Velodyne VLP16 LIDAR sensor and process the point cloud to generate maps, do localization, generate driving path. Then, it finally generates velocity and rotation angle in real time, and sends the data to embedded controller. Embedded controller controls steering wheel based on the received data. The developed autonomous speed sprayer is verified in test-bed with apple tree-shaped artworks.