• 제목/요약/키워드: sensitivity and stability

검색결과 774건 처리시간 0.025초

과도에너지 마진의 감도를 이용한 발전력 재배분의 Priority (Generation Rescheduling Priority using Transient Energy Margin Sensitivity)

  • 김규호;김수남;이상봉;송경빈
    • 전기학회논문지
    • /
    • 제60권6호
    • /
    • pp.1086-1090
    • /
    • 2011
  • This paper presents a method to evaluate generation rescheduling priority using transient energy margin sensitivity for power system operation. A change in any of the functional parameters obviously causes a change in the energy margin. Especially the energy margin sensitivity is evaluated for change with respect to generation. For a given contingency, the energy margin is computed and the respective sensitivities are also computed. It is possible to rank the sensitivities and thereby determine the generators which will affect the energy margin most and hence affect the stability (instability) of the system. The sign of the sensitivity indicates the direction of change in generation for a given change in energy margin.

Generation Rescheduling Based on Energy Margin Sensitivity for Transient Stability Enhancement

  • Kim, Kyu-Ho;Rhee, Sang-Bong;Hwang, Kab-Ju;Song, Kyung-Bin;Lee, Kwang Y.
    • Journal of Electrical Engineering and Technology
    • /
    • 제11권1호
    • /
    • pp.20-28
    • /
    • 2016
  • This paper presents a generation rescheduling method for the enhancement of transient stability in power systems. The priority and the candidate generators for rescheduling are calculated by using the energy margin sensitivity. The generation rescheduling formulates the Lagrangian function with the fuel cost and emission such as NOx and SOx from power plants. The generation rescheduling searches for the solution that minimizes the Lagrangian function by using the Newton’s approach. While the Pareto optimum in the fuel cost and emission minimization has a drawback of finding a number of non-dominated solutions, the proposed approach can explore the non-inferior solutions of the multiobjective optimization problem more efficiently. The method proposed is applied to a 4-machine 6-bus system to demonstrate its effectiveness.

발전기 모델링 정도에 의한 고유치 일차${\cdot}$이차 감도계수 비교 (Comparison of the first and the second order eigenvalue sensitivity coefficients affected by generator modeling)

  • 김덕영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 A
    • /
    • pp.345-347
    • /
    • 2004
  • In small signal stability analysis of power systems, eigenvalue analysis is the most useful method and the detailed modeling of generator has an important effect to the eigenvalues. Generator full model is used for precise dynamic analysis of generators and controllers while two-axis model is used for multi-machine systems because of the reduced order of the state matrix. Also, the eigenvalue sensitivity coefficients are used for optimizing controller parameters to improve system stability. This paper compare the first and second order eigenvalue sensitivity coefficients of controllers using generator full model with those of two-axis model. As a result of an example, the estimated eigenvalues using the first and the second eigenvalue sensitivity coefficients using generator full model is very close to those of state matrix. Also the error ratios throughout a wide range of controller parameters is less than $1\%$.

  • PDF

Coprime factor reduction of plant in $H{\infty}$ mixed sensitivity problem

  • Um, Tae-Ho;Oh, Do-Chang;Park, Hong-Bea;Kim, Soo-Joong
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.340-343
    • /
    • 1995
  • In this paper, we get a reduced order controller in $H^{\infty}$ mixed sensitivity problem with weighting functions. For this purpose, we define frequency weighted coprime factor of plant in $H^{\infty}$ mixed sensitivity problem and reduce the coprime factor using the frequency weighted balanced truncation technique. The we design the controller for plant with reduced order coprime factor using J-lossless coprime factorization technique. Using this approach, we can derive the robust stability condition and achieve good performance preservation in the closed loop system with reduced order controller. And it behaves well in both stable plant and unstable plant.t.

  • PDF

ANALYSIS OF AN SEIQRVS EPIDEMIC DYNAMICS FOR INFECTIOUS VIRAL DISEASE: QUARANTINE AS A CONTROL STRATEGY

  • RAKESH SINGH TOMAR;JOYDIP DHAR;AJAY KUMAR
    • Journal of applied mathematics & informatics
    • /
    • 제41권1호
    • /
    • pp.107-121
    • /
    • 2023
  • An epidemic infectious disease model consists of six compartments viz. Susceptible, Exposed, Infected, Quarantine, Recovered, and Virus with nonlinear saturation incidence rate is proposed to know the viral disease dynamics. There exist two biological equilibrium points for the model system. The system's local and global stability is done through Lyapunov's direct method about equilibrium points. The sensitivity analysis has been performed for the basic reproduction number and equilibrium points through the normalized forward sensitivity index. Sensitivity analysis shows that virus growth and quarantine rates are more sensitive parameters. In support of mathematical conclusions, numerical experimentation has been shown.

디지털 방사선 시스템(DR)의 복부와 골반부 검사 시 관전압과 감도 변화에 따른 영상 화질과 방사선 출력의 안정성 평가 (Evaluation of Image Quality and Stability of Radiation Output according to Change in Tube Voltage and Sensitivity when Abdomen and Pelvis Examination of Digital Radiography (DR))

  • 황준호;양형진;최지안;이경배
    • 한국콘텐츠학회논문지
    • /
    • 제19권12호
    • /
    • pp.517-526
    • /
    • 2019
  • 본 연구는 자동노출제어장치 사용 시 파라미터 조합에 따른 영상 화질과 방사선 출력을 분석하여 임상에 적용할 수 있는 최적의 방법을 모색하고자 하였다. 실험방법은 관전압 70, 81 kVp와 자동노출제어장치(Automatic Exposure Control, AEC)의 감도 S200, S400, S800, S1000을 조합해서 복부와 골반부의 입사표면선량, 관전류량, 신호 대 잡음비(Signal to Noise Ratio, SNR), 대조도 대 잡음비(Contrast to Noise Ratio, CNR), 시간-방사선량 곡선을 구하였다. 그 후 영상 화질과 출력의 안정성을 평가하였다. 그 결과 입사표면선량, 관전류량, 신호 대 잡음비, 대조도 대 잡음비는 관전압과 감도가 높게 설정될수록 감소하였다. 또한 관전압과 감도가 높게 설정될수록 시간-방사선량 곡선은 출력의 안정성이 줄어드는 양상을 보였다. 결론적으로 복부와 골반부 검사 시 관전압과 감도를 높게 조합할수록 검출기는 영상 화질과 방사선 출력을 정상적으로 재현해내지 못하였다. 따라서 비교적 낮은 관전압과 감도를 조합하여 검출기가 파라미터의 조합을 인식할 때 발생하는 오차 범위를 최소화해야 영상 화질과 방사선 출력의 안정성을 최적화할 수 있다는 것을 알 수 있었다.

암반손상대를 고려한 터널 안정성 민감도 분석 (Sensitivity analysis of tunnel stability with a consideration of an excavation damaged zone)

  • 김진수;권상기
    • 한국터널지하공간학회 논문집
    • /
    • 제16권1호
    • /
    • pp.91-104
    • /
    • 2014
  • 발파충격 또는 응력재분배에 의해 발생하는 암반손상대(Excavation Damaged Zone, EDZ)는 암반의 여러 물성들을 변화시킴으로써 구조물의 거동과 안정성에 영향을 미치게 된다. 본 연구에서는 EDZ를 고려한 터널에 대한 2차원 연속체 해석 코드인 FLAC을 이용하여 역학적 안정성을 해석하고 안정성에 관련된 인자들을 대상으로 부분요인설계법(Fractional Factorial Design)을 이용한 민감도 분석을 실시하였다. 모델링 결과 터널 주변의 거동과 안전율은 손상대 유 무에 따라 많은 차이가 있었다. 민감도 분석 결과 터널주변의 안전율에 많은 영향을 미치는 인자는 측압계수와 심도, 점착력, 물성 감소비, 터널의 폭, 내부 마찰각, 터널의 높이 순이었다. EDZ는 터널 주변의 역학적 안전성에 많은 영향을 미칠 수 있기 때문에 터널 설계 시 고려하는 것이 필요하다.

시뮬레이션에 의한 관절대차 현가요소 민감도 해석 (Simulation-based Sensitivity Analysis of Suspension Elements of an Articulated Bogie)

  • 한형석
    • 한국정밀공학회지
    • /
    • 제20권7호
    • /
    • pp.201-207
    • /
    • 2003
  • Sensitivity analysis of suspension elements of an articulated bogie for light railway vehicles is presented. The ride, stability and safety are used as dynamic performance indices. Suspension elements of 10 and a conicity of wheel are used as design variables. To analyze sensitivity of design variables. the railway vehicle dynamics analysis program AGEM is used. The results show that the secondary suspension elements have a strong effect on ride and the primary suspension elements have a moderate effect on ride. Conicity of wheel has a strong effect on the stability. The safety is not effected by all the design variables.

An Interior Point Method based Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints

  • Song Hwa-Chang;Lee Byong-Jun;Moon Young-Hwan
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권2호
    • /
    • pp.152-158
    • /
    • 2005
  • This paper describes a reactive optimal power flow incorporating margin enhancement constraints. Margin sensitivity at a steady-state voltage instability point is calculated using invariant space parametric sensitivity, and it can provide valuable information for selection of effective control parameters. However, the weakest buses in neighboring regions have high margin sensitivities within a certain range. Hence, the control determination using only the sensitivity information might cause violation of operational limits of the base operating point, at which the control is applied to enhance voltage stability margin in the direction of parameter increase. This paper applies an interior point method (IPM) to solve the optimal power flow formulation with the margin enhancement constraints, and shunt capacitances are mainly considered as control variables. In addition, nonlinearity of margin enhancement with respect to control of shunt capacitance is considered for speed-up control determination in the numerical example using the IEEE 118-bus test system.

Short-term Reactive Power Reserve Optimization Based on Trajectory Sensitivity

  • Sun, Quancai;Cheng, Haozhong;Zhang, Jian;Li, Baiqing;Song, Yue
    • Journal of Electrical Engineering and Technology
    • /
    • 제12권2호
    • /
    • pp.541-548
    • /
    • 2017
  • An increasing concern is paid to short-term voltage stability with the growth of penetration of induction motor loads. Reactive power reserve(RPR) of power system is critical to improve voltage stability. A definition of short-term voltage stability-related RPR(SVRPR) is proposed. Generators vary their contributions to voltage stability with their location and system condition, etc. Voltage support coefficient based on the second-order trace sensitivity method is proposed to evaluate SVRPR's contribution to short-term voltage stability. The evaluation method can account for the generator's reactive support in transient process and the contingency severity. Then an optimization model to improve short-term voltage stability is built. To deal with multiple contingencies, contingency weight taking into account both its probability and severity is proposed. The optimization problem is solved by primal dual interior point method. Testing on IEEE_39 bus system, it is indicated that the method proposed is effective. Short-term voltage stability is improved significantly by the way of SVRPR optimization. Hence, the approach can be used to prevent the happening of voltage collapse during system's contingency.