• Title/Summary/Keyword: sensing strategy

Search Result 234, Processing Time 0.023 seconds

The Effect of Customer and Competitor Market Sensing Capability on Business Performance of SMEs: An Empirical Study in Indonesia

  • NURHAYATI, Tatiek;HENDAR, Hendar
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.8 no.8
    • /
    • pp.601-612
    • /
    • 2021
  • The purpose of this study is to investigate and examine the role of specialized marketing capabilities (SMC) in mediating the relationship between customer sensing capability (CuSC) and competitor sensing capability (CoSC) with business performance (BP) at SMEs retail fashion in Indonesia. This study used 330 SMEs from ten regencies in Indonesia and examined the regression relationship between the four variables, SMC, CuSC, CoSC, and BP. Confirmatory factor analysis (CFA) was used to measure the validity and reliability of the construct used. For data analysis techniques, this study used structural equation modeling (SEM) with AMOS Version 22.0. This study found that SMC acts as a partial mediator in the relationship between CuSC and CoSC with SMC and BP. By examining the diverse literature on market sensing capability, marketing strategy, and BP, this study offers a unique analysis of market learning and its effects on SMC and BP in Retail Fashion SMEs in Indonesia. Furthermore, future research needs to broaden the findings and improve generalizations by conducting studies of SMEs in other industries, such as manufacturing, and services of small, medium and large scale. In addition, it needs to add some countries as research objects, not only Indonesia.

Applying Standards of Image Quality: Issues and Strategies

  • Chang, Eunmi;Park, Yongjae
    • Korean Journal of Remote Sensing
    • /
    • v.36 no.5_2
    • /
    • pp.907-916
    • /
    • 2020
  • Images taken from airplanes, satellites and drones have been used in various realms, and the kinds and specifications of images are enlarged gradually. Despite the importance of images on diverse applications, the quality information of the images is controlled by each agency or institute respectively without any principle, or even is neglected, because the application of standards to the final products of image is not easy in Korea. We aim to review necessities and strategies for applying international standards on image and to suggest potential issues and possibilities to make standards in action.

Application Fields and Strategy of KOMPSAT-2 Imagery

  • Sakong, Ho-Sang;Im, Jung-Ho
    • Korean Journal of Remote Sensing
    • /
    • v.18 no.1
    • /
    • pp.43-52
    • /
    • 2002
  • KOMPSAT-2 satellite is being developed to be launched in 2004 expectingly. This paper is investigating application status of satellite imagery data using various domestic and foreign references such as journals and dissertations and seeing status of policy making and project implementation. In order to promote the application of KOMPSAT-2 imagery, its application ways in each field are presented. In addition, this paper suggests strategies to induce application of KOMPSAT-2 imagery.

U.S. Commercial Remote Sensing Regulatory Reform Policy (미국의 상업적 원격탐사활동에 대한 규제개혁 정책)

  • Kwon, Heeseok;Lee, Jinho;Lee, Eunjung
    • Korean Journal of Remote Sensing
    • /
    • v.35 no.2
    • /
    • pp.241-250
    • /
    • 2019
  • The current U.S. remote sensing act was made in 1992 and has been criticized for being outdated and inappropriate in view of the modern technological development. In order to enhance the American competitiveness and leadership in the world, President Trump announced Space Policy Directive (SPD) - 2 on May 24, which is designed to modernize the regulations related to commercial space activities including private remote sensing system operations. It should be noted that the regulatory reform efforts are made within broader terms of the National Security Strategy on Dec. 17, 2017, pursuing the enhancement of national security and economic prosperity as well. A legislative support in Congress has also been added to the Administration's efforts. The proposed regulatory reform on the licensing of commercial remote sensing system operations outlines the features of lessening administrative burden on applicants by simplifying the overall application process and of limiting the operations only when there is an impact upon the national security with clear and convincing evidence. But, due to a different regulatory system of each country, such a movement to expand an individual's freedom to explore and utilize outer space may result in an international dispute or a violation of international obligations, so there should be a merit in paying attention to the U.S. commercial remote sensing regulatory reform, and it is desirable to establish international norms as flexible and appropriate to the level of space technology and space industry.

Incentive Mechanism in Participatory Sensing for Ambient Assisted Living

  • Yao, Hu;Muqing, Wu;Tianze, Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.1
    • /
    • pp.159-177
    • /
    • 2018
  • Participatory sensing is becoming popular and has shown its great potential in data acquisition for ambient assisted living. In this paper, we propose an incentive mechanism in participatory sensing for ambient assisted living, which benefits both the platform and the mobile devices that participated in the sensing task. Firstly, we analyze the profit of participant and platform, and a Stackelberg game model is formulated. The model takes privacy, reputation, power state and quality of data into consideration, and aims at maximizing the profit for both participant and publisher. The discussion of properties of the game show that there exists an unique Stackelberg equilibrium. Secondly, two algorithms are given: one describes how to reach the Stackelberg equilibrium and the other presents the procedures of employing the incentive strategy. Finally, we conduct simulations to evaluate the properties and effectiveness of the proposed mechanism. Simulation results show that the proposed incentive mechanism works well, and the participants and the publisher will be benefitted from it. With the mechanism, the total amount of sensory data can be maximized and the quality of the data can be guaranteed effectively.

Evaluation of Geo-based Image Fusion on Mobile Cloud Environment using Histogram Similarity Analysis

  • Lee, Kiwon;Kang, Sanggoo
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.1
    • /
    • pp.1-9
    • /
    • 2015
  • Mobility and cloud platform have become the dominant paradigm to develop web services dealing with huge and diverse digital contents for scientific solution or engineering application. These two trends are technically combined into mobile cloud computing environment taking beneficial points from each. The intention of this study is to design and implement a mobile cloud application for remotely sensed image fusion for the further practical geo-based mobile services. In this implementation, the system architecture consists of two parts: mobile web client and cloud application server. Mobile web client is for user interface regarding image fusion application processing and image visualization and for mobile web service of data listing and browsing. Cloud application server works on OpenStack, open source cloud platform. In this part, three server instances are generated as web server instance, tiling server instance, and fusion server instance. With metadata browsing of the processing data, image fusion by Bayesian approach is performed using functions within Orfeo Toolbox (OTB), open source remote sensing library. In addition, similarity of fused images with respect to input image set is estimated by histogram distance metrics. This result can be used as the reference criterion for user parameter choice on Bayesian image fusion. It is thought that the implementation strategy for mobile cloud application based on full open sources provides good points for a mobile service supporting specific remote sensing functions, besides image fusion schemes, by user demands to expand remote sensing application fields.

Quasi real-time and continuous non-stationary strain estimation in bottom-fixed offshore structures by multimetric data fusion

  • Palanisamy, Rajendra P.;Jung, Byung-Jin;Sim, Sung-Han;Yi, Jin-Hak
    • Smart Structures and Systems
    • /
    • v.23 no.1
    • /
    • pp.61-69
    • /
    • 2019
  • Offshore structures are generally exposed to harsh environments such as strong tidal currents and wind loadings. Monitoring the structural soundness and integrity of offshore structures is crucial to prevent catastrophic collapses and to prolong their lifetime; however, it is intrinsically challenging because of the difficulties in accessing the critical structural members that are located under water for installing and repairing sensors and data acquisition systems. Virtual sensing technologies have the potential to alleviate such difficulties by estimating the unmeasured structural responses at the desired locations using other measured responses. Despite the usefulness of virtual sensing, its performance and applicability to the structural health monitoring of offshore structures have not been fully studied to date. This study investigates the use of virtual sensing of offshore structures. A Kalman filter based virtual sensing algorithm is developed to estimate responses at the location of interest. Further, this algorithm performs a multi-sensor data fusion to improve the estimation accuracy under non-stationary tidal loading. Numerical analysis and laboratory experiments are conducted to verify the performance of the virtual sensing strategy using a bottom-fixed offshore structural model. Numerical and experimental results show that the unmeasured responses can be reasonably recovered from the measured responses.

Efficient Spectrum Sensing Based on Evolutionary Game Theory in Cognitive Radio Networks (인지무선 네트워크에서 진화게임을 이용한 효율적인 협력 스펙트럼 센싱 연구)

  • Kang, Keon-Kyu;Yoo, Sang-Jo
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.39B no.11
    • /
    • pp.790-802
    • /
    • 2014
  • In cognitive radio technology, secondary users can determine the absence of PU by periodic sensing operation and cooperative sensing between SUs yields a significant sensing performance improvement. However, there exists a trade off between the gains in terms of probability of detection of the primary users and the costs of false alarm probability. Therefore, the cooperation group must maintain the suitable size. And secondary users should sense not only the currently using channels and but also other candidates channel to switch in accordance with sudden appearance of the primary user. In this paper, we propose an effective group cooperative sensing algorithm in distributed network situations that is considering both of inband and outband sensing using evolutionary game theory. We derived that the strategy group of secondary users converges to an ESS(Evolutionary sable state). Using a learning algorithm, each secondary user can converge to the ESS without the exchange of information to each other.

Deep Learning for Remote Sensing Applications (원격탐사활용을 위한 딥러닝기술)

  • Lee, Moung-Jin;Lee, Won-Jin;Lee, Seung-Kuk;Jung, Hyung-Sup
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.6_2
    • /
    • pp.1581-1587
    • /
    • 2022
  • Recently, deep learning has become more important in remote sensing data processing. Huge amounts of data for artificial intelligence (AI) has been designed and built to develop new technologies for remote sensing, and AI models have been learned by the AI training dataset. Artificial intelligence models have developed rapidly, and model accuracy is increasing accordingly. However, there are variations in the model accuracy depending on the person who trains the AI model. Eventually, experts who can train AI models well are required more and more. Moreover, the deep learning technique enables us to automate methods for remote sensing applications. Methods having the performance of less than about 60% in the past are now over 90% and entering about 100%. In this special issue, thirteen papers on how deep learning techniques are used for remote sensing applications will be introduced.

Sensing Parameter Selection Strategy for Ultra-low-power Micro-servosystem Identification (초저전력 마이크로 서보시스템의 모델식별을 위한 계측 파라미터 선정 기법)

  • Hahn, Bongsu
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.8
    • /
    • pp.849-853
    • /
    • 2014
  • In micro-scale electromechanical systems, the power to perform accurate position sensing often greatly exceeds the power needed to generate motion. This paper explores the implications of sampling rate and amplifier noise density selection on the performance of a system identification algorithm using a capacitive sensing circuit. Specific performance objectives are to minimize or limit convergence rate and power consumption to identify the dynamics of a rotary micro-stage. A rearrangement of the conventional recursive least-squares identification algorithm is performed to make operating cost an explicit function of sensor design parameters. It is observed that there is a strong dependence of convergence rate and error on the sampling rate, while energy dependence is driven by error that may be tolerated in the final identified parameters.