Annual Conference on Human and Language Technology
/
2015.10a
/
pp.216-219
/
2015
컴퓨터를 이용하여 명사와 용언의 의미를 자동으로 분별하는 것은 기계번역이나 검색 등의 기술에서 아주 중요한 기반 기술이다. 최근에 동형이의어 분별에 대한 연구 결과로 약 96%의 정확률을 보이는 시스템이 개발되었으나, 다의어 분별에 대한 연구는 아직 초기 단계로 일부 어휘만을 한정하여 연구되고 있다. 본 논문에서는 어휘지도를 이용하여 다의어를 분별하는 방법을 연구하였고, 어휘지도에 등록된 모든 일반 명사와 용언을 대상으로 실험하였다. 제안된 알고리즘은 문장에서 나타나는 명사와 용언의 관계를 어휘지도에서 찾고, 그 정보를 기반으로 다의어를 분별하였다. 아직은 그 정확률이 실용적인 수준이라고 볼 수는 없지만, 전체 다의어를 대상으로 실험하였고, 그 실험 결과를 분석함으로써 앞으로의 다의어 분별 연구 방향에 도움될 것으로 판단된다.
Journal of Korea Society of Industrial Information Systems
/
v.5
no.2
/
pp.56-61
/
2000
The quality of English to Korean Machine Translation depends on how well it deals with target word selection of verbs containing enormous ambiguity. Verb sense disambiguation can be done by using collocation, but the construction of verb collocations costs a lot of efforts and expenses. So, existing methods should be examined in the practical view points. This paper describes the practical method of target word selection using existing collocation and semantic distance computed from minimum semantic features of nouns.
Annual Conference on Human and Language Technology
/
2010.10a
/
pp.177-178
/
2010
단어 의미 중의성은 자연언어처리 분야에서의 주요 관심 분야이다. 한국어에서의 단어 의미 중의성 문제는 다른 언어에 비하여 연구가 미흡한 상태이다. 기존 연구에서는 빈도 수에 기반한 공기 정보 벡터를 이용한 방법에서 처리되지 못하는 경우가 발생하였다. 또한 사전에 기반한 상위어 추출 시에 정형화된 형태가 아닌 경우에 어려움이 발생하였다. 본 논문에서는 상호정보량을 추가하여 공기 정보 처리 과정 시에 발생하는 오류를 최소화 하였다. 또한 대상 명사의 상위어 추출 문제를 해결하기 위해 어휘 지식 베이스를 적용하였다.
Proceedings of the Korea Information Processing Society Conference
/
2012.04a
/
pp.365-368
/
2012
어의 중의성 해소는 자연어처리에서 중요한 역할을 한다. 감독 중의성 해소 방법은 비감독 중의성 해소 방법보다 높은 성능을 나타내지만, 구축비용이 큰 대규모 의미부착 말뭉치가 필요하다. 본 논문에서는 중국어 어휘의미망(HowNet)과 의미 미부착 말뭉치를 이용한 중국어 비감독 어의 중의성 해소 방법을 제안한다. 의미 미부착 말뭉치에서 통계정보를 추출하고, 중국어 어휘 의미망에서 중의성 어휘의 의미별 형제어를 추출하여 중의성 어휘의 주변 문맥에 나타나는 어휘와 카이제곱검정(${\chi}^2$-test)에 의한 독립성 검정을 통해 어휘 간 연관성을 판단하고 중의성 해소를 한다. 본 논문에서 제안한 중의성 해소방법의 성능을 SemEval-2007 평가데이터에서 측정한 결과 명사와 동사에서 각각 64.7%, 49.4%를 나타냈다. 이는 SemEval-2007 중국어 비감독 중의성 해소에서 가장 높은 성능을 나타낸 시스템보다 13.1%, 13.9% 높은 성능이다.
International Journal of Computer Science & Network Security
/
v.22
no.4
/
pp.245-253
/
2022
Commenced in 1954 by IBM, machine translation has expanded immensely, particularly in this period. Machine translation can be broken into seven main steps namely- token generation, analyzing morphology, lexeme, tagging Part of Speech, chunking, parsing, and disambiguation in words. Morphological analysis plays a major role when translating Indian languages to develop accurate parts of speech taggers and word sense. The paper presents various machine translation methods used by different researchers for Indian languages along with their performance and drawbacks. Further, the paper concentrates on parts of speech (POS) tagging in Marathi dialect using various methods such as rule-based tagging, unigram, bigram, and more. After careful study, it is concluded that for machine translation, parts of speech tagging is a major step. Also, for the Marathi language, the Hidden Markov Model gives the best results for parts of speech tagging with an accuracy of 93% which can be further improved according to the dataset.
Proceedings of the Korea Information Processing Society Conference
/
2009.11a
/
pp.935-936
/
2009
본 논문에서는 과학기술문서에 존재하는 기술용어와 이들 간의 연관관계를 설명하는 디스크립터를 찾아서 [subject predicate object] 형태의 트리플을 생성하는 애플리케이션을 개발할 때 발생하는 단어 의미 애매성 해소 문제를 다룬다. 기술용어가 가지고 있는 연관관계를 결정하기 위해서 워드넷의 신셋 정보를 사용하는데 이 방법은 동사를 워드넷에 매핑할 때와 상위어 관계로 전이할 때 여러 개의 의미에 매핑되는 문제점이 발생한다. 이것을 해결하기 위해서 상위어 시퀀스 클러스터링을 이용한 단어의 의미 애매성 해결 방안을 제시한다. 이 방법을 사용함으로써 워드넷 매핑과 상위어 전이 시에 발생하는 다중 매핑 문제를 동시에 해결할 수 있다.
Annual Conference on Human and Language Technology
/
2021.10a
/
pp.195-198
/
2021
기존 연구에 따르면, 시소러스의 계층적 관계를 기반으로 압축한 의미 어휘 태그를 단어 의미 모호성 해소에 사용할 경우, 그 성능이 향상되었다. 본 논문에서는 시소러스를 사용하지 않고, 국어 사전에 포함된 단어의 의미 정의를 군집화하여 압축된 의미 어휘 태그를 만드는 방법을 제안한다. 또, 이를 이용하여 효율적으로 단어 의미 모호성을 해소하는 BERT 기반의 딥러닝 모델을 제안한다. 한국어 세종 의미 부착 말뭉치로 실험한 결과, 제안한 방법의 성능이 F1 97.21%로 기존 방법의 성능 F1 95.58%보다 1.63%p 향상되었다.
Annual Conference on Human and Language Technology
/
2019.10a
/
pp.380-382
/
2019
어의 중의성 문제는 자연어 분석 과정에서 공통적으로 발생하는 문제로 한 가지의 단어 표현이 여러 의미로 해석될 수 있기 때문에 발생한다. 이를 해결하기 위한 어의 중의성 해소는 입력 문장 중 여러 개의 의미로 해석될 수 있는 단어가 현재 문맥에서 어떤 의미로 사용되었는지 분류하는 기술이다. 어의 중의성 해소는 입력 문장의 의미를 명확하게 해주어 정보검색의 성능을 향상시키는데 중요한 역할을 한다. 본 논문에서는 딥러닝을 이용하여 어의 중의성 해소를 수행하며 기존 모델의 단점을 극복하여 입력 문장에서 중의적 단어를 판별하는 작업과 그 단어의 의미를 분류하는 작업을 동시에 수행하는 모델을 제안한다.
KIPS Transactions on Software and Data Engineering
/
v.1
no.1
/
pp.31-42
/
2012
In order to process the suffix derived nouns of Korean, most of Korean processing systems have been registering the suffix derived nouns in dictionary. However, this approach is limited because the suffix is very high productive. Therefore, it is necessary to analyze semantically the unregistered suffix derived nouns. In this paper, we propose a method to disambiguate homograph suffixes using Korean lexical semantic network(U-WIN) for the purpose of semantic analysis of the suffix derived nouns. 33,104 suffix derived nouns including the homograph suffixes in the morphological and semantic tagged Sejong Corpus were used for experiments. For the experiments first of all we semantically tagged the homograph suffixes and extracted root of the suffix derived nouns and mapped the root to nodes in the U-WIN. And we assigned the distance weight to the nodes in U-WIN that could combine with each homograph suffix and we used the distance weight for disambiguating the homograph suffixes. The experiments for 35 homograph suffixes occurred in the Sejong corpus among 49 homograph suffixes in a Korean dictionary result in 91.01% accuracy.
Journal of the Korea Society of Computer and Information
/
v.11
no.5
s.43
/
pp.75-86
/
2006
Target word selection is one of the most important and difficult tasks in English-Korean Machine Translation. It effects on the translation accuracy of machine translation systems. In this paper, we present a new approach to select Korean target word for an English noun with translation ambiguities using multiple knowledge such as verb frame patterns, sense vectors based on collocations, statistical Korean local context information and co-occurring POS information. Verb frame patterns constructed with dictionary and corpus play an important role in resolving the sparseness problem of collocation data. Sense vectors are a set of collocation data when an English word having target selection ambiguities is to be translated to specific Korean target word. Statistical Korean local context Information is an N-gram information generated using Korean corpus. The co-occurring POS information is a statistically significant POS clue which appears with ambiguous word. The experiment showed promising results for diverse sentences from web documents.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.