• 제목/요약/키워드: semiconductor materials quality

검색결과 147건 처리시간 0.032초

홀로그래픽 리소그래피에 의한 미세패턴 형성과 MOCVD에 의한 양자세선 어레이의 제작 (Micropattern generation by holographic lithography and fabrication of quantum wire array by MOCVD)

  • 김태근;조성우;임현식;김용;김무성;박정호;민석기
    • 전자공학회논문지A
    • /
    • 제33A권6호
    • /
    • pp.114-119
    • /
    • 1996
  • The use of holographic interference lithography and removal techniques to corrugate GaAs substrate have been studied. The periodic photoresist structure, which serves as a protective mask during etching, is holographically prepared. Subsequently periodic V-grooved pattern is formed on the GaAs substrate by conventional a H$_{2}$SO$_{4}$-H$_{2}$O$_{2}$-H$_{2}$O wet etching. The linewidth of a GaAs pattern is about 0.4$\mu$m and the depth is 0.5$\mu$m A quantum wires(QWRs) array is well formed on the V-grooved substrate by MOCVD (metalorganic chemical vapor deposition) growth of GaAs/Al$_{0.5}$Ga$_{0.5}$As (50$\AA$/300$\AA$) quantum wells. The formation of QWR array is confirmed by the temperature dependent photoluminescence (PL) measurement. The intensive PL peak with a FWHM of 6meV at 21K shows the high quality of the QWR array.

  • PDF

고품질 3-Aminopropyltriethoxysilane 자기조립단분자막을 이용한 고전도도 Poly(3,4-ethylenedioxythiophene) 전극박막의 개발 (Development of Highly Conductive Poly(3,4-ethylenedioxythiophene) Thin Film using High Quality 3-Aminopropyltriethoxysilane Self-Assembled Monolayer)

  • 최상일;김원대;김성수
    • 통합자연과학논문집
    • /
    • 제4권4호
    • /
    • pp.294-297
    • /
    • 2011
  • Quality of PEDOT electrode thin film vapor phase-polymerized on 3-aminopropyltriethoxysilane (APS) self-assembled monolayer (SAM) is very crucial for making an ohmic contact between electrode and semiconductor layer of an organic transistor. In order to improve the quality of PEDOT film, the quality of APS-SAM laying underneath the film must be in the best condition. In this study, in order to improve the quality of APS-SAM, the monolayer was self-assembled on $SiO_2$ surface by a dip-coating method under strictly controlled relative humidity (< 18%RH). The quality of APS-SAM and PEDOT thin film were investigated with a contact angle analyzer, AFM, FE-SEM, and four-point probe. The investigation showed that a PEDOT film grown on the humidity-controlled SAM is very smooth and compact (sheet resistivity = 20.2 Ohm/sq) while a film grown under the uncontrolled condition is nearly amorphous and contains quite many pores (sheet resistivity = 200 Ohm/sq). Therefore, this study clearly proves that a highly improved quality of APSSAM can offer a highly conductive PEDOT electrode thin film on it.

Graphoepitaxy법을 이용하여 SiO$_2$ 기판 위에 제작한 ZnO 박막의 특성에 관한 연구 (Graphoepitaxy of ZnO thin films by Zn evaporation)

  • 김광희;최석철;이태훈;정진우;박승환;정미나;정명훈;양민;;장지호
    • 한국정보통신학회:학술대회논문집
    • /
    • 한국해양정보통신학회 2005년도 춘계종합학술대회
    • /
    • pp.1026-1029
    • /
    • 2005
  • Grating 이 형성된 SiO$_2$ 기판상에 ZnO 박막을 graphoepitaxy 법으로 형성시킬 것을 제안하고 그 가능성을 고찰하였다. Si(100) 기판상에 노광작업(photolithograpy)을 이용하여 요철구조를 형성시킨 다음 자연산화를 시켜서 SiO$_2$ 기판을 제작하였고, 제작된 요철구조 위에 열증착 법으로 Zn 를 증착 시킨 후 이를 산화 시켜서 ZnO 박막을 형성 시켰다. 또한 열처리에 의한 결정성의 변화를 관찰하기 위하여 700 ${\sim}$ 900 $^{\circ}C$에서 열처리를 하였다. 제작된 시료는 Atomic Force Microscopy (AFM)로 표면을 관찰하였으며, Photoluminescence (PL) 을 이용하여 결정성의 변화를 관찰하였다.

  • PDF

STS304합금의 선삭가공에서 표면거칠기의 최적화 (Optimization of Surface Roughness of STS 304 in a Turning Process)

  • 최만성
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.59-64
    • /
    • 2017
  • The general manufacturing problem can be described as the achievement of a predefined product quality with given equipment, cost and time constraints. Unfortunately, for some quality characteristics of a product such as surface roughness it is hard to ensure that these requirements will be met. Stainless steels STS 304 is frequently used as shaft materials in small fiber reinforced polymer(FRP) fishing boats. In this work, the dry turning parameters of STS 304 are optimized by using Taguchi method. The experiments were conducted at three different cutting speeds with three different feed and three different depth of cut. The cutting parameters are optimized using signal to noise ratio and the analysis of variance. The effects of cutting speed and feed on surface roughness was analyzed. The results revealed that the spindle speed is the more significant parameter influencing the surface roughness.

  • PDF

A Simulated Study of Silicon Solar Cell Power Output as a Function of Minority-Carrier Recombination Lifetime and Substrate Thickness

  • Choe, Kwang Su
    • 한국재료학회지
    • /
    • 제25권9호
    • /
    • pp.487-491
    • /
    • 2015
  • In photovoltaic power generation where minority carrier generation via light absorption is competing against minority carrier recombination, the substrate thickness and material quality are interdependent, and appropriate combination of the two variables is important in obtaining the maximum output power generation. Medici, a two-dimensional semiconductor device simulation tool, is used to investigate the interdependency in relation to the maximum power output in front-lit Si solar cells. Qualitatively, the results indicate that a high quality substrate must be thick and that a low quality substrate must be thin in order to achieve the maximum power generation in the respective materials. The dividing point is $70{\mu}m/5{\times}10^{-6}sec$. That is, for materials with a minority carrier recombination lifetime longer than $5{\times}10^{-6}sec$, the substrate must be thicker than $70{\mu}m$, while for materials with a lifetime shorter than $5{\times}10^{-6}sec$, the substrate must be thinner than $70{\mu}m$. In substrate fabrication, the thinner the wafer, the lower the cost of material, but the higher the cost of wafer fabrication. Thus, the optimum thickness/lifetime combinations are defined in this study along with the substrate cost considerations as part of the factors to be considered in material selection.

Synthesis of InP Nanocrystal Quantum Dots Using P(SiMe2tbu)3

  • 정소명;김영조;정소희
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.533-534
    • /
    • 2012
  • Colloidal III-V semiconductor nanocrystal quantum dots (NQDs) have attracted attention as they can be applied in various areas such as LED, solar cell, biological imaging, and so on because they have decreased ionic lattices, lager exciton diameter, and reduced toxicity compared with II-VI compounds. However, the study and application of III-V semiconductor nanocrystals is limited by difficulties in control nucleation because the molecular bonds in III-V semiconductors are highly covalent compared to II-VI compounds. There is a need for a method that provides rapid and scalable production of highly quality nanoparticles. We present a new synthetic scheme for the preparation of InP nanocrystal quantum dots using new phosphorus precursor, P(SiMe2tbu)3. InP nanocrystals from 530nm to 600nm have been synthesized via the reaction of In(Ac)3 and new phosphorus precursor in noncoordinating solvent, ODE. This opens the way for the large-scale production of high quality Cd-free nanocrystal quantum dots.

  • PDF

The Effect of Re-nitridation on Plasma-Enhanced Chemical-Vapor Deposited $SiO_2/Thermally-Nitrided\;SiO_2$ Stacks on N-type 4H SiC

  • 청콴유;방욱;김남균;나훈주
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 2004년도 하계학술대회 논문집 Vol.5 No.1
    • /
    • pp.48-51
    • /
    • 2004
  • In this paper the importance of re-nitridation on a plasma-enhanced chemical-vapor deposited(PECVD) $SiO_2$ stacked on a thermally grown thin-nitrided $SiO_2$ on n-type 4H SiC have been investigated. Without the final re-nitridation process, the leakage current of metaloxidesemiconductor(MOS) was extremely large. It is believed that water and carbon, contamination from the low-thermal budget PECVD process, are the main factors that destroyed the high quality thin-buffer nitrided oxide. After re-nitridation annealing, the quality of the stacked gate oxide was improved. The reasons of this improvement are presented.

  • PDF

A pilot study of half-value layer measurements using a semiconductor dosimeter for intraoral radiography

  • Shun Nouchi;Hidenori Yoshida;Yusaku Miki;Yasuhito Tezuka;Ruri Ogawa;Ichiro Ogura
    • Imaging Science in Dentistry
    • /
    • 제53권3호
    • /
    • pp.217-220
    • /
    • 2023
  • Purpose: This pilot study was conducted to evaluate half-value layer (HVL) measurements obtained using a semiconductor dosimeter for intraoral radiography. Materials and Methods: This study included 8 aluminum plates, 4 of which were low-purity (less than 99.9%) and 4 high-purity (greater than 99.9%). Intraoral radiography was performed using an intraoral X-ray unit in accordance with the dental protocol at the authors' affiliated hospital: tube voltage, 60 kVp and 70 kVp; tube current, 7 mA; and exposure time, 0.10 s. The accuracy of HVL measurements for intraoral radiography was assessed using a semiconductor dosimeter. A simple regression analysis was performed to compare the aluminum plate thickness and HVL in relation to the tube voltage (60 kVp and 70 kVp) and aluminum purity (low and high). Results: For the low-purity aluminum plates, the HVL at 60 kVp (Y) and 70 kVp (Y) was significantly correlated with the thickness of the aluminum plate (X), with Y=1.708+0.415X (r=0.999, P<0.05) and Y=1.980+0.484X (r=0.999, P<0.05), respectively. Similarly, for the high-purity aluminum plates, the HVL at 60 kVp (Y) and 70 kVp (Y) was significantly correlated with the plate thickness(X), with Y=1.696+0.454X (r=0.999, P<0.05) and Y=1.968+0.515X (r=0.998, P<0.05), respectively. Conclusion: This pilot study examined the relationship between aluminum plate thickness and HVL measurements using a semiconductor dosimeter for intraoral radiography. Semiconductor dosimeters may prove useful in HVL measurement for purposes such as quality assurance in dental X-ray imaging.

실내 대기질 진단을 위한 금속산화물 기반 폼알데하이드 가스센서 연구 동향 (Review of Metal Oxide-based Formaldehyde Gas Sensor to Measure Indoor Air Quality)

  • 김윤화;구원태;장지수;김일두
    • 센서학회지
    • /
    • 제28권6호
    • /
    • pp.377-384
    • /
    • 2019
  • People currently spend more than 80% of their time indoors; therefore, the management of indoor air quality has become an important issue. The contamination of indoor air can cause sick house syndrome and various environmental diseases such as atopy and nephropathy. Formaldehyde gas, which is the main contaminant of indoor air, is lethal even with microscopic exposure; however, it is commonly used as an adhesive and waterproofing agent for indoor building materials. Therefore, there is a need for a gas sensor capable of detecting trace amounts of formaldehyde gas. In this review, we summarize recent studies on metal oxide-based semiconductor gas sensors for formaldehyde gas detection, methods to improve the gas-sensing properties of metal oxides of various dimensions, and the effects of catalysts for the detection of parts-per-billion level gases. Through this, we discuss the necessary characteristics of the metal oxidebased semiconductors for gas sensors for the development of next-generation sensors.

Evaluation of Flexible Complementary Inverters Based on Pentacene and IGZO Thin Film Transistors

  • Kim, D.I.;Hwang, B.U.;Jeon, H.S.;Bae, B.S.;Lee, H.J.;Lee, N.E.
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2012년도 제42회 동계 정기 학술대회 초록집
    • /
    • pp.154-154
    • /
    • 2012
  • Flexible complementary inverters based on thin-film transistors (TFTs) are important because they have low power consumption and high voltage gain compared to single type circuits. We have manufactured flexible complementary inverters using pentacene and amorphous indium gallium zinc oxide (IGZO) for the p-channel and n-channel, respectively. The circuits were fabricated on polyimide (PI) substrate. Firstly, a thin poly-4-vinyl phenol (PVP) layer was spin coated on PI substrate to make a smooth surface with rms surface roughness of 0.3 nm, which was required to grow high quality IGZO layers. Then, Ni gate electrode was deposited on the PVP layer by e-beam evaporator. 400-nm-thick PVP and 20-nm-thick ALD Al2O3 dielectric was deposited in sequence as a double gate dielectric layer for high flexibility and low leakage current. Then, IGZO and pentacene semiconductor layers were deposited by rf sputter and thermal evaporator, respectively, using shadow masks. Finally, Al and Au source/drain electrodes of 70 nm were respectively deposited on each semiconductor layer using shadow masks by thermal evaporator. The characteristics of TFTs and inverters were evaluated at different bending radii. The applied strain led to change in voltage transfer characteristics of complementary inverters as well as source-drain saturation current, field effect mobility and threshold voltage of TFTs. The switching threshold voltage of fabricated inverters was decreased with increasing bending radius, which is related to change in parameters of TFTs. Throughout the bending experiments, relationship between circuit performance and TFT characteristics under mechanical deformation could be elucidated.

  • PDF