• Title/Summary/Keyword: semiconductor material

Search Result 1,729, Processing Time 0.028 seconds

Structures of Ultrathin Copper Nanowires Encapsulated in Carbon Nanotubes (탄소나노튜브 속에 성장된 구리 나노와이어의 구조)

  • Choi, Won-Young;Kang, Jeong-Won;Song, Ki-Oh;Hwnang, Ho-Jung
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.294-299
    • /
    • 2003
  • We have investigated the structures of copper nanowires encapsulated in carbon nanotubes using a structural optimization process applied to the steepest descent method. The results showed that the stable morphology of the cylindrical ultrathin copper nanowires in carbon nanotubes is multishell packs consisted of coaxial cylindrical shells. As the diameter of copper nanotubes increased, the encapsulated copper nanowires have the face centered cubic structure as the bulk. Both the semiclassical orbits in a circle and the circular rolling of a triangular network can explain the structures of ultrathin multishell copper nanowires encapsulated in carbon nanotubes.

  • PDF

A Study on V-I characteristics depend on a distance between semiconductor-semiconductor (반도체-반도체 사이의 거리 변화에 따른 전압-전류 특성 연구)

  • Kim, Hye-Jeong;Kim, Jeong-Ho;Cheon, Min-U;Park, Yong-Pil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04a
    • /
    • pp.52-56
    • /
    • 2004
  • The movement of electron in the semiconductor-gap-semiconductor was observed by the variation of V-I characteristic as a distance two ZnO(1010) single crystals. When the resistance between two crystals was $10^2{\sim}10^4{\Omega}$, V-I characteristics had the pattern of the field emission or ohmic contact. On the other hand, when the resistance was larger than $10^7{\Omega}$ by increasing the distance between two crystals, the effect of surface barrier was prominent. This result leads to the conclusion that both the field emission (or ohmic contact) and the surface barrier effect including the tunneling have the influence on V-I characteristics of mechanically contacted crystals.

  • PDF

Electrical characteristics of the SOI RESURF LDMOSFET with step doped epi-layer (Step doping 농도를 가지는 SOI RESURF LDMOSFET의 전기적 특성 분석)

  • Kim, Hyoung-Woo;Seo, Kil-Soo;Kim, Ji-Hong;Kim, Nam-Kyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.361-364
    • /
    • 2004
  • Surface doped SOI RESURF LDMOSFET with recessed source region is proposed to improve the on- and off-state characteristics. Surface region of the proposed LDMOS structure is doped like step. The characteristics of the proposed LDMOS is verified by two-dimensional process simulator ATHENA and device simulator ATLAS[1]. The numerically calculated on-resistance($R_{ON}$) of the proposed LDMOS is $10.36\Omega-cm$ and breakdown voltage is 205V when $L_{dr}=7{\mu}m$ with step doped surface.

  • PDF

Electrical characteristics of the multi-result MOSFET (Multi result MOSFET의 에피층 농도에 따른 전기적 특성분석)

  • Kim, Hyoung-Woo;Kim, Sang-Cheol;S대, Kil-Soo;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.365-368
    • /
    • 2004
  • Charge compensation effects in multi-resurf structure make possible to obtain high breakdown volatage and low on-resistance in vertical MOSFET. In this paper, electrical characteristics of the vertical MOSFET with multi epitaxial layer is presented. Proposed device has n and p-pillar for obtaining the charge compensation effects and The doping concentration each pillar is varied from $5{\times}10^{14}\;to\;1{\times}10^{16}/cm^3$. The thickness of the proposed device also varied from $400{\mu}m\;to\;500{\mu}m$. Due to the charge compensation effects, 4500V of breakdown voltage can be obtained.

  • PDF

Optimization simulation for High Voltage 4H-SiC DiMOSFET fabrication (고전압 4H-SiC DiMOSFET 제작을 위한 최적화 simulation)

  • Kim, Sang-Cheol;Bahng, Wook;Kim, Nam-Kyun;Kim, Eun-Dong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.07a
    • /
    • pp.353-356
    • /
    • 2004
  • This paper discribes the analysis of the I-V characteristics of 4H-SiC DiMOSFET with single epi-layer Silicon Carbide has been around for over a century. However, only in the past two to three decades has its semiconducting properties been sufficently studied and applied, especially for high-power and high frequency devices. We present a numerical simulation-based optimization of DiMOSFET using the general-purpose device simulator MINIMIS-NT. For simulation, a loin thick drift layer with doping concentration of $5{\times}10^{15}/cm^3$ was chosen for 1000V blocking voltage design. The simulation results were used to calculate Baliga's figure of Merit (BFOM) as the criterion structure optimization and comparison.

  • PDF

A Study on Temperature Characteristics according to Ceramic Material Stacking Sequence of Electrostatic Chuck Surface (정전척 표면의 세라믹물질 적층 순서에 따른 온도 특성에 관한 연구)

  • Jang, Kyungmin;kim, Kwangsun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.16 no.3
    • /
    • pp.116-120
    • /
    • 2017
  • Temperature uniformity of a wafer in a semiconductor process is a very important factor that determines the overall yield. Therefore, it is very important to confirm the temperature characteristics of the chuck surface on which the wafer is lifted. The temperature characteristics of the chuck depend on the external heat source, the shape of the cooling channel inside the chuck, the material on the chuck surface, and so on. In this study, CFD confirms the change of temperature characteristics according to the stacking order of ceramic materials on the chuck surface, and suggests the best lamination method.

  • PDF

Advances in Nanomaterials-Based Color Conversion Layer (나노물질 기반의 광변환층 개발 동향)

  • Kim, Dongryong;Choi, Moon Kee
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.35 no.6
    • /
    • pp.547-555
    • /
    • 2022
  • Color conversion layer refers to a layer that converts the blue light emitted from the backlight into the red and green light. Heavy metal-free quantum dots and perovskite nanocrystals have attracted great attention as base materials for color conversion layers due to their outstanding optical characteristics. Here, we review recent advances in the development of color conversion layers based on quantum dots. First, we overview the representative optical characteristics of quantum dots and perovskite nanocrystals, and then introduce printing techniques for color converting layers including photolithography, inkjet printing, and nanoimprinting. Finally, we conclude this review with a brief perspective.

Review of Failure Mechanisms on the Semiconductor Devices under Electromagnetic Pulses (고출력전자기파에 의한 반도체부품의 고장메커니즘 고찰)

  • Kim, Dongshin;Koo, Yong-Sung;Kim, Ju-Hee;Kang, Soyeon;Oh, Wonwook;Chan, Sung-Il
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.6
    • /
    • pp.37-43
    • /
    • 2017
  • This review investigates the basic principle of physical interactions and failure mechanisms introduced in the materials and inner parts of semiconducting components under electromagnetic pulses (EMPs). The transfer process of EMPs at the semiconducting component level can be explained based on three layer structures (air, dielectric, and conductor layers). The theoretically absorbed energy can be predicted by the complex reflection coefficient. The main failure mechanisms of semiconductor components are also described based on the Joule heating energy generated by the coupling between materials and the applied EMPs. Breakdown of the P-N junction, burnout of the circuit pattern in the semiconductor chip, and damage to connecting wires between the lead frame and semiconducting chips can result from dielectric heating and eddy current loss due to electric and magnetic fields. To summarize, the EMPs transferred to the semiconductor components interact with the chip material in a semiconductor, and dipolar polarization and ionic conduction happen at the same time. Destruction of the P-N junction can result from excessive reverse voltage. Further EMP research at the semiconducting component level is needed to improve the reliability and susceptibility of electric and electronic systems.

Study of SiO2 Thin Film Patterning by Low Energy Electron Beam Lithography Using Microcolumns (저 에너지 초소형 전자칼럼 리소그래피를 이용한 SiO2 박막의 Pattern 제작에 관한 연구)

  • Yoshimoto, T.;Kim, H.S.;Kim, D.W.;Ahn, S.
    • Journal of the Korean Magnetics Society
    • /
    • v.17 no.4
    • /
    • pp.178-181
    • /
    • 2007
  • Electron beam lithography has been studied as a next-generation lithography technology instead of photo lithography for ULSI semiconductor devices. In this work, we have made a low-energy electron beam lithography system based on the microcolumn and investigated the dependence of the pattern thickness on the energies and dose concentration of the electron beam. We have also demonstrated the potential of low-energy lithography by achieving 100 nm-$SiO_2$ thin film patterning.

Optimal Design of Ultrasonic Horn for Ultrasonic Drilling Processing of Ceramic Material (세라믹 소재 초음파 드릴링 가공을 위한 초음파 Horn의 최적 설계에 관한 연구)

  • Cha, Seung-hwan;Yang, Dong-ho;Lee, Sang-hyeop;Lee, Jong-Chan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.1-11
    • /
    • 2022
  • Recently, there has been continuous technological development in the semiconductor industry, and semiconductor manufacturing technologies are being advanced and highly integrated. For this reason, ceramic material having excellent heat resistance, wear resistance, and conductivity are used as components in semiconductor manufacturing. Among them, the probe card's space transformer is used as ceramic material to prevent electronic signal noise during the electrical die sorting of semiconductor function testing. However, implementing a bulk-type space transformer with a thickness of 5.6 mm or more is challenging, and thus it is produced in a structure with a stacked ceramic film. The stacked space transformer has low productivity because it is difficult to ensure hole clogging and a precise shape. In this research, an ultrasonic horn is designed to manufacture a bulk-type ceramic space transformer through ultrasonic drilling. Vibration characteristics were analyzed according to the ultrasonic horn, and the natural frequency was measured.