• 제목/요약/키워드: semiconductor facility

검색결과 86건 처리시간 0.027초

Virtual Metrology for predicting $SiO_2$ Etch Rate Using Optical Emission Spectroscopy Data

  • Kim, Boom-Soo;Kang, Tae-Yoon;Chun, Sang-Hyun;Son, Seung-Nam;Hong, Sang-Jeen
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2009년도 제38회 동계학술대회 초록집
    • /
    • pp.464-464
    • /
    • 2010
  • A few years ago, for maintaining high stability and production yield of production equipment in a semiconductor fab, on-line monitoring of wafers is required, so that semiconductor manufacturers are investigating a software based process controlling scheme known as virtual metrology (VM). As semiconductor technology develops, the cost of fabrication tool/facility has reached its budget limit, and reducing metrology cost can obviously help to keep semiconductor manufacturing cost. By virtue of prediction, VM enables wafer-level control (or even down to site level), reduces within-lot variability, and increases process capability, $C_{pk}$. In this research, we have practiced VM on $SiO_2$ etch rate with optical emission spectroscopy(OES) data acquired in-situ while the process parameters are simultaneously correlated. To build process model of $SiO_2$ via, we first performed a series of etch runs according to the statistically designed experiment, called design of experiments (DOE). OES data are automatically logged with etch rate, and some OES spectra that correlated with $SiO_2$ etch rate is selected. Once the feature of OES data is selected, the preprocessed OES spectra is then used for in-situ sensor based VM modeling. ICP-RIE using 葰.56MHz, manufactured by Plasmart, Ltd. is employed in this experiment, and single fiber-optic attached for in-situ OES data acquisition. Before applying statistical feature selection, empirical feature selection of OES data is initially performed in order not to fall in a statistical misleading, which causes from random noise or large variation of insignificantly correlated responses with process itself. The accuracy of the proposed VM is still need to be developed in order to successfully replace the existing metrology, but it is no doubt that VM can support engineering decision of "go or not go" in the consecutive processing step.

  • PDF

AHP를 활용한 반도체부품 생산공정 시뮬레이션 연구 (A Simulation Study on the Manufacturing Process of Semiconductor Parts Using AHP)

  • 허특;문덕희;박철순;장병림
    • 한국시뮬레이션학회논문지
    • /
    • 제18권2호
    • /
    • pp.65-75
    • /
    • 2009
  • 반도체 생산공정은 다양한 장비들이 복잡하게 서로 연관된 일련의 작업들로 구성되어 있다. 이들 장비들은 공학적 또는 환경적 요인들을 고려하여 직렬 또는 병렬의 혼합구조로 배치되어 있다. 따라서 많은 비용이 발생하고, 동시에 고려해야할 사항이 복잡하므로 한 번 설치되면 레이아웃 변경이 거의 불가능한 실정이다. 따라서 생산량의 변동이나 신제품의 개발과 같은 상황에서 새로운 설비의 투자나 레이아웃의 변경은 매우 신중하게 결정되어야 한다. 본 논문은 반도체의 부품을 생산하는 공장에 대해 시뮬레이션을 적용한 사례연구다. 시뮬레이션 모델은 $QUEST^{(R)}$라는 도구를 이용하여 개발되었으며, 시뮬레이션을 통하여 생산환경의 변화에 대응하는 다양한 전략을 검토하였다. 또한 본 연구에서는 결정인자가 다수인 대안에서 최적안을 도출해 내기 위하여 AHP 기법을 사용하였다.

다층 박막 스퍼터링 장비의 제어시스템에 관한 연구 (A Study on Control System of Multi Layer Sputtering Equipment)

  • 이선종;유흥렬;손영득
    • 전기전자학회논문지
    • /
    • 제22권2호
    • /
    • pp.302-308
    • /
    • 2018
  • 다층 박막 스퍼터링(Multi-Layer Sputtering)은 상이한 물질을 원하는 두께의 박막을 다층(Multi-Layer) 으로 형성함을 목적으로 한다. 다층 박막 증착 공정은 공정 시간이 비교적 많은 비중을 차지하는데, 그 주요 원인은 공정 시간에 비해 증착하고자하는 기판의 이동 시간과 챔버를 고진공 상태로 만드는 시간이 많이 소요되기 때문이다. 반도체나 디스플레이 산업은 하나의 챔버에서 단일 물질을 스퍼터링하고 기판이 다관절 로봇을 통해 다른 챔버로 이동하여 다른 물질을 스퍼터링하는 공정이 대부분인데, 이는 필연적으로 공정 설비 내에 여러 개의 챔버와 진공펌프, 다관절 로봇이 필요하다. 이러한 문제점을 해결하기 위해 본 논문에서는 단일 진공 챔버 내에서 서로 상이한 물질을 증착하는 다층박막 스퍼터링 장치에 대한 제어시스템을 제안하고 TFT 공정에서 적용한다. 제어시스템의 제작과 실험을 통해 유효성을 입증한다.

폐수의 악취측정을 위한 금속산화물 반도체 및 전기화학식 가스센서 어레이 특성 평가 (Evaluation of Metal Oxide Semiconductor and Electrochemical Gas Sensor Array Characterization for Measuring Wastewater Odor)

  • 임봉빈;이석준;김선태
    • 센서학회지
    • /
    • 제24권1호
    • /
    • pp.29-34
    • /
    • 2015
  • This study aimed to evaluate the characterization of a metal oxide semiconductor and electrochemical gas sensor array for measuring wastewater odor. The sensitivity of all gas sensors observed in sampling method by stripping was 6.7 to 20.6 times higher than that by no stripping, except sensor D (electrochemical gas sensor). The average reduction ratio of sensor signal as a function of initial dilution rate of wastewater was in the order of food plant > food waste reutilization facility > plating plant. The sensitivity of gas sensors was dependent on both the type of wastewater and the dilution rate. The sensor signals observed by the gas sensor array were correlated with the dilution factor (OU) calculated by the air dilution sensory test with several wastewater ($r^2=0.920{\sim}0.997$), except the sensor signals of sensor D measured in the plating plant wastewater. It seems likely that the gas sensor array plays a role in the evaluation of odor in wastewater and is useful tool for on-site odor monitoring in the wastewater facilities.

에칭 프로세스를 위한 $SF_{6}/O_2$ 플라즈마 특성에 관한연구 (A Study on the $SF_6$ Plasma Characteristic for the etching process)

  • 하장호;전용우;신용철;윤영대;박원주;이광식;이동인
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2000년도 하계학술대회 논문집 C
    • /
    • pp.2074-2076
    • /
    • 2000
  • In this paper, RFICP equipment is designed and manufactured with the aid of high frequency discharge to produce uniform plasma with high density and large diameter. And $SF_6$ gas is used to investigate plasma characteristics. The electron density and temperature, potential dependence of $SF_6$ plasma in accordance with its operating pressure, gas flux and input power are measured by the method of Langmuir probe. The etching characteristics of the plasma is researched in accordance with operating pressure, gas flux, input power to apply to Silicon Wafer which is used in the field of semiconductor process. The proposed RFICP equipment, in this paper, has relatively excellent etching characteristics, and is thought to be element of oxidization-sheath etching facility in semiconductor manufacturing process.

  • PDF

질화갈륨 전력반도체와 Si CMOS 소자의 단일기판 집적화를 위한 Si(110) CMOS 공정개발 (Development of Si(110) CMOS process for monolithic integration with GaN power semiconductor)

  • 김형탁
    • 전기전자학회논문지
    • /
    • 제23권1호
    • /
    • pp.326-329
    • /
    • 2019
  • 차세대 전력반도체 소재인 질화갈륨(GaN)이 증착된 GaN-on-Si 기판의 기술성숙도가 높아지면서 Si CMOS 소자와의 단일기판 집적화에 대한 관심이 고조되고 있다. CMOS 특성이 상대적으로 저하되는 (111)Si 보다 (110)Si의 CMOS소자가 집적화 관점에서 유리할 것으로 판단되며, 따라서 향후 전개될 GaN-on-(110)Si 플랫폼을 활용한 GaN 전력반도체 스위치소자와 Si CMOS소자의 단일기판 집적화에 적용될 수 있도록 국내 Si CMOS 파운드리 공정을 (110)Si 기판에 진행하였다. 제작된 CMOS소자의 기본특성 및 인버터체인 회로특성, 그리고 게이트 산화막의 신뢰성 분석을 통해 향후 국내 파운드리공정을 활용한 (110)Si CMOS기술과 GaN의 집적화의 가능성을 검증하였다.

지하역사내 식생바이오필터의 입자상 오염물질 저감특성 연구 (Study on Particulate Pollutant Reduction Characteristics of Vegetation Biofilters in Underground Subway Stations)

  • 김태한;오지은;김미주
    • 반도체디스플레이기술학회지
    • /
    • 제21권4호
    • /
    • pp.99-105
    • /
    • 2022
  • Public attention to the indoor environment of underground subway stations, which is a representative multi-use facility, has been increasing along with the increase in indoor activities. In underground stations, fine iron oxide, which affects the health of users, is generated because of the friction between wheels and rails. Among particulate pollutant reduction technologies, plants have been considered as a non-chemical air purification method, and their effects in reducing certain chemical species have been identified in previous studies. The present study aimed to derive the total quantitative and qualitative reduction effects of a bio-filter system comprising air purifying plants, installed in an underground subway station. The experiment proceeded in two ways. First, PM(particulate matter) reduction effect by vegetation biofilter was monitored with the IAQ(indoor air quality) station. In addition, chemical speciation analysis conducted on the samples collected from the experimental and control areas where plants and irrigation using SEM-EDS(scanning electron microscopy-energy dispersive X-ray spectroscopy). This study confirmed the effect of the vegetation bio-filter system in reducing the accumulation of particulate pollutants and transition and other metals that are harmful to the human body.

지하역사 내 승하차 인원에 따른 식생바이오필터의 미세먼지 저감효과와 운전전략 (The Fine Dust Reduction Effect and Operational Strategy of Vegetation Biofilters Based on Subway Station Passenger Volume)

  • 이재영;김예진;김미주
    • 반도체디스플레이기술학회지
    • /
    • 제22권4호
    • /
    • pp.13-18
    • /
    • 2023
  • A subway station is a prominent multi-purpose facility where the quantitative management of fine dust, generated by various factors, is conducted. Recently, eco-friendly air purification methods using air-purifying plants are being discussed, with the focus on biofiltration through vegetation. Previous research in this field has confirmed the reduction effects of transition metals such as Fe, which have been identified as harmful to human health. This study aimed to identify the sources of fine dust dispersion within subway stations and derive an efficient operational strategy for air-purifying plants that takes into account the behavior characteristics of fine dust within multi-purpose facilities. The experiment monitored regional fine dust levels through IAQ stations established based on prior research. Also, the data was analyzed through time-series and correlation analyses by linking it with passenger counts at subway stations and the frequency of train stops. Furthermore, to consider energy efficiency, we conducted component-specific power consumption monitoring. Through this study, we were able to derive the optimal operational strategy for air-purifying plants based on time-series comprehensive analysis data and confirm significant energy efficiency.

  • PDF

반도체 FAB근무에 대한 정량적 노출지표 개발 (Development of Quantitative Exposure Index in Semiconductor Fabrication Work)

  • 신규식;김태훈;정현희;조수헌;이경호
    • 한국산업보건학회지
    • /
    • 제27권3호
    • /
    • pp.187-192
    • /
    • 2017
  • Objectives: It is difficult to identify exposure factors in the semiconductor industry due to low exposure levels to hazardous substances and because various processes take place in fabrication (FAB). Furthermore, a single worker often experiences a variety of job histories, so it is difficult to classify similar exposure groups (SEG) in the semiconductor industry. Therefore, we intend to develop a new exposure index, the period of working in FAB, that is applicable to the semiconductor industry. Methods: First, in specifying the classification of jobs, we clearly distinguished whether they were FAB workers or non-FAB workers. We checked FAB working hours per week through questionnaires administered to FAB workers. We derived an exposure index called FAB-Year that can represent the period of working in FAB. FAB-Year is an index that can quantitatively indicate the period of working in FAB, and one FAB-Year is defined as working in FAB for 40 hours per week for one year. Results: A total of 8,453 persons were surveyed, and male engineers and female operators occupied 90% of the total. The average total years of service of the subjects was 9.7 years, and the average FAB-Year value was 6.8. This means that the FAB-working ratio occupies 70% of total years of service. The average FAB-Year value for female operators was 8.4, for male facility engineers it was 7.7, and for male process engineers it was 3.5. A FAB-Year standardization value according to personal information (gender, job group, entry year, retirement year) for the survey subjects can be calculated, and standardized estimation values can be applied to workers who are not participating in the survey, such as retirees and workers on a leave of absence (LOA). Conclusions: This study suggests an alternative method for overcoming the limitations on epidemiological study of the semiconductor industry where it is difficult to classify exposure groups by developing a new exposure index called FAB-Year. Since FAB-Year is a quantitative index, we expect that various approaches will be possible in future epidemiological studies.

반도체 R&D BPR 시뮬레이션 (Resource Based Simulation in Semiconductor Business)

  • 김원경;이종복
    • 한국시뮬레이션학회:학술대회논문집
    • /
    • 한국시뮬레이션학회 2001년도 춘계 학술대회 논문집
    • /
    • pp.31-35
    • /
    • 2001
  • Simulation --- The ideal tool for BPR. Work now and CASE tools are static modeling tools. Based on our own customers surveys, we have discovered that the use of process modeling tools thus far has focused on modeling the current(What-Is) state of a business. We have found that 90 percent of reengineering projects, the modeling tools of choice have been flowcharting tools. Static models offer help in understanding the overall nature of an existing process. However, static models can not really help you see the step by step motions towards completion of your goals. In static modeling, you see two pictures in time, usually taken at the current state and final state models of your reengineering project. Static models are usually not object oriented, therefore can not show facility or office layout and movement of entities and objects throughout the facility. However, this does not mean that static modeling does not have its application nor add value to the user as in a few success stories. Simulation helps the team analyze the complex aspects of the project. Many times a plan that looks good on paper might turn out entirely different when put into action. Therefore, simulation helps you look at how situations might work before actual implementation. In particular, computer simulation models help you view a reengineered condition before they are rolled-out. Items such as a lead time and resource allocation.

  • PDF