• 제목/요약/키워드: semi-stability

검색결과 315건 처리시간 0.03초

주행조건 및 가변 댐퍼 사양에 따른 준능동형 현가시스템의 성능 분석 (Analysis for Performance of Semi-active suspension with Running condition and Specification of Variable Damper)

  • 손인석;이남진;김철근;남학기
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 추계학술대회 논문집
    • /
    • pp.805-810
    • /
    • 2005
  • The main functions of suspension system of railway vehicle are isolating vibration from track irregularity to car-body for the Ride quality and keeping its stability with limitation of vehicle's movement. These two functions conflict with each other, then it is impossible to achieve both of performance with traditional passive suspension which has constant characteristics. So, to improve this situation the active suspension was suggested and in specially the semi-active suspension is noticed for its effectiveness on cost despite of its lower performance than full-active suspension. In this study the control logic made through LQG theory was designed with simplified vehicle model and variable damper model defined by $1^{st}$ order system, then the analysis of simulation results was done to understand influence on the performance of semi-active suspension with running conditions and response characteristics of variable damper.

  • PDF

ON THE BOUNDS FOR WAVE STABILITY OF STRATIFIED SHEAR FLOWS

  • S. LAVANYA;V. GANESH;G. VENKATA RAMANA REDDY
    • Journal of applied mathematics & informatics
    • /
    • 제42권1호
    • /
    • pp.105-121
    • /
    • 2024
  • We consider incompressible, inviscid, stratified shear flows in β plane. First, we obtained an unbounded instability region intersect with semi-ellipse region. Second, we obtained a bounded instability regions depending on Coriolis, stratification parameters and basic velocity profile. Third, we obtained a criterion for wave stability. This has been illustrated with standard examples. Also, we obtained upper bound for growth rate.

자기 유변 유체를 이용한 반능동 감쇠기의 개발 (Development of Semi-active Damper by Magneto-Rheological Fluid)

  • 정병보;권순우;김상화;박영진
    • 유변학
    • /
    • 제11권2호
    • /
    • pp.105-111
    • /
    • 1999
  • 감쇠기는 기계 시스템에서 에너지를 소모하는데 사용되는 요소이다. 이러한 감쇠기에는 수동 감쇠기, 능동 감쇠기, 반능동 감쇠기 등의 종류가 있다. 반능동 감쇠기는 수동 감쇠기에 비해서 더 좋은 성능을 내면서 능동 감쇠기보다는 더 작은 동력원을 필요로 하는 장치로 상황에 따라서 그 감쇠력 특성을 변화 시킬 수 있다. 본 논문은, 자기 유변 유체를 이용한 반능동 감쇠기의 개발에 관한 것이다. 자기 유변 유체는 가제어성 유체의 일종으로 인가 자기장에 대해서 그 유동학적 성질이 변하며 높은 항복응력, 낮은 점성계수, 불순물에 대한 안정성과 넓은 사용 온도 범위 등의 장점을 가진 재료이다. 이를 이용할 경우 간단한 구조로 반능동 감쇠기를 설계할 수 있을 뿐만 아니라 빠른 응답성 등의 효과도 기대할 수 있다. 본 연구에서는 자기 유변 유체를 이용하여 설계·제작된 몇 가지 종류의 감쇠기들을 통하여 그 응용 방법과 범위 그리고 응용 시 수반되는 문제점 등을 제시하였다.

  • PDF

Comparison of the Muscle Activity of Lumbar Stabilizers Between Stoop and Semi-Squat Lifting Techniques at Different Lifting Loads

  • Yang, Hoe-Song;Kwon, Oh-Yun;Lee, Yeon-Seop
    • 한국전문물리치료학회지
    • /
    • 제19권3호
    • /
    • pp.105-114
    • /
    • 2012
  • This study was performed to compare the muscle activity of lumbar stabilizers between stoop and semi-squat lifting techniques at different lifting loads. Twenty healthy subjects (9 males, 11 females) were recruited for this study. Muscle activity of external obliques (EO), internal obliques (IO) and lumbar multifidus (LM) muscle was measured by surface electromyography during stoop and semi-squat lifting at different lifting loads (10%, 20%, and 30% of the subject's body weight). A one-way repeated measure ANOVA was applied. The results showed that EMG activity of EO was significantly increased with a load of 30% of body weight compared to 10% and 20% of body weight in both lifting techniques (p<.05). Muscle activity of LM was significantly increased in 20% compared to 10% and 30% compared to 10% of subject's body weight in stoop lifting and the muscle activity of LM was significantly increased in 20% compared to 10%, 30% compared to 20%, and 30% compared to 10% of the subject's body weight in semi-squat lifting (p<.05). However, there was no significant difference in activity of IO according to lifting loads in both lifting techniques. There were no significant differences in muscle activity of EO, IO, and LM between stoop and semi-squat technique (p>.05). Therefore, the results of this study suggested that the EO can contribute to increase the lumbar stability during stoop and semi-squat lifting at 30% of body weight rather than at lower loads, and the LM seems to act as counteractor to imposed loads during stoop and semi-squat lifting with increasing loads.

반건조 오징어의 저장성 연장을 위한 감마선 조사기술의 이용 (Application of Gamma Irradiation for Prolonging Shelf-Life of Semi-Dried Squid (Todarodes pacificus))

  • 변명우;이주운;조철훈;육홍선;차보숙;김명철
    • 한국식품영양과학회지
    • /
    • 제31권3호
    • /
    • pp.469-474
    • /
    • 2002
  • 본 연구는 반건조 오징어의 저장기간 연장을 위해 감마선 조사기술의 적용 가능성을 평가하기 위해 수행되었다. 반건조 오징어를 함기 및 진공포장하여 0, 3, 5, 7 kGy로 조사한 후에 1$0^{\circ}C$에서 저장하면서 실험에 사용하였다. 미생물학적 측면에서 비조사구는 저장기간 동안 급속하게 부패가 진행되었으며, 선택배지를 사용한 검사에서 곰팡이와 효모가 저장 중 반건조 오징어의 주요 오염미생물로 확인되었다. 감마선 조사로 미생물수가 감소하였으며, 반건조 오징어의 보존을 위해서는 7 kGy 이상의 선량이 요구되었다. VBN 함량은 저장 중 조사선량이 증가할수록 함량의 증가가 억제되는 것으로 나타났다. 조사 직후 TBA값은 모든 처리구에서 차이가 없었다. 감마선 조사에 의한 관능적인 차이는 관찰되지않았다.

Differentiation among stability regimes of alumina-water nanofluids using smart classifiers

  • Daryayehsalameh, Bahador;Ayari, Mohamed Arselene;Tounsi, Abdelouahed;Khandakar, Amith;Vaferi, Behzad
    • Advances in nano research
    • /
    • 제12권5호
    • /
    • pp.489-499
    • /
    • 2022
  • Nanofluids have recently triggered a substantial scientific interest as cooling media. However, their stability is challenging for successful engagement in industrial applications. Different factors, including temperature, nanoparticles and base fluids characteristics, pH, ultrasonic power and frequency, agitation time, and surfactant type and concentration, determine the nanofluid stability regime. Indeed, it is often too complicated and even impossible to accurately find the conditions resulting in a stabilized nanofluid. Furthermore, there are no empirical, semi-empirical, and even intelligent scenarios for anticipating the stability of nanofluids. Therefore, this study introduces a straightforward and reliable intelligent classifier for discriminating among the stability regimes of alumina-water nanofluids based on the Zeta potential margins. In this regard, various intelligent classifiers (i.e., deep learning and multilayer perceptron neural network, decision tree, GoogleNet, and multi-output least squares support vector regression) have been designed, and their classification accuracy was compared. This comparison approved that the multilayer perceptron neural network (MLPNN) with the SoftMax activation function trained by the Bayesian regularization algorithm is the best classifier for the considered task. This intelligent classifier accurately detects the stability regimes of more than 90% of 345 different nanofluid samples. The overall classification accuracy and misclassification percent of 90.1% and 9.9% have been achieved by this model. This research is the first try toward anticipting the stability of water-alumin nanofluids from some easily measured independent variables.

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.

Semi-active structural fuzzy control with MR dampers subjected to near-fault ground motions having forward directivity and fling step

  • Ghaffarzadeh, Hosein
    • Smart Structures and Systems
    • /
    • 제12권6호
    • /
    • pp.595-617
    • /
    • 2013
  • Semi-active control equipments are used to effectually enhance the seismic behavior of structures. Magneto-rheological (MR) dampers are semi-active devices that can be utilized to control the response of structures during seismic loads and have received voracious attention for response suppression. They supply the adaptability of active devices and stability and reliability of passive devices. This paper presents an optimal fuzzy logic control scheme for vibration mitigation of buildings using magneto-rheological dampers subjected to near-fault ground motions. Near-fault features including a directivity pulse in the fault-normal direction and a fling step in the fault-parallel direction are considered in the requisite ground motion records. The membership functions and fuzzy rules of fuzzy controller were optimized by genetic algorithm (GA). Numerical study is performed to analyze the influences of near-fault ground motions on a building that is equipped with MR dampers. Considering the uncontrolled system response as the base line, the proposed method is scrutinized by analogy with that of a conventional maximum dissipation energy (MED) controller to accentuate the effectiveness of the fuzzy logic algorithm. Results reveal that the fuzzy logic controllers can efficiently improve the structural responses and MR dampers are quite promising for reducing seismic responses during near-fault earthquakes.

고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화 (Optimization of direct design system of semi-rigid steel frames using advanced analysis and genetic algorithm)

  • 최세휴
    • 한국강구조학회 논문집
    • /
    • 제18권6호
    • /
    • pp.707-716
    • /
    • 2006
  • 본 논문에서는 고등해석과 유전자 알고리즘을 이용한 반강접 강뼈대 구조물의 직접설계시스템의 최적화를 수행하였다. 고등해석은 접합부의 비선형, 기하학적 비선형 및 재료적 비선형을 고려한다. 기하학적 비선형은 안정함수를 사용하여 고려하였으며, 재료적 비선형은 CRC 접선 탄성계수와 포물선 함수를 사용함으로서 고려하였다. 접합부의 비선형은 Kishi와 Chen이 제안한 3가지 매개변수를 가지는 파워모델을 사용하여 고려하였다. 최적화 기법으로는 유전자 알고리즘을 사용하였다. 목적함수는 구조물의 중량을 사용하였으며, 제약조건식은 구조시스템의 하중-저항능력, 처짐, 층간 수평변위 및 연성요구 조건을 고려하였다. 제안된 방법에 의한 설계결과를 기존의 방법들과 비교하였다.

Validation of a 750 kW semi-submersible floating offshore wind turbine numerical model with model test data, part I: Model-I

  • Pham, Thanh Dam;Shin, Hyunkyoung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제11권2호
    • /
    • pp.980-992
    • /
    • 2019
  • This paper describes a model test and numerical simulation of a 750-kW-semi-submersible platform wind turbine under several wind and wave conditions for validation of the numerical simulation model. The semi-submersible platform was designed to support the 750-kW-wind turbine class and operate at a water depth of 50 m. The model tests were performed to estimate the performance characteristics of the wind turbine system in the wide tank of the University of Ulsan. Motions and loads of the wind turbine system under the wind and wave conditions were measured and analyzed. The NREL-FAST code was used to simulate the wind turbine system, and the results were compared with those of the test model. The results demonstrate that the numerical simulation captures noticeably the fully coupled floating wind turbine dynamic responses. Also, the model shows a good stability and small responses during waves, wind, and operation of the 750-kW-floating offshore wind turbine.