• 제목/요약/키워드: semi-rigid analysis

검색결과 193건 처리시간 0.029초

명시적 호장법을 이용한 공간프레임의 반강접 탄소성 후좌굴 해석 (Semi-rigid Elasto-Plastic Post Buckling Analysis of Space Frame by Using the Explicit Arc-Length Method)

  • 이경수;한상을
    • 한국강구조학회 논문집
    • /
    • 제23권5호
    • /
    • pp.535-546
    • /
    • 2011
  • 본 연구에서는 다양한 명시적 호장법을 사용하여 공간프레임의 반강접 탄소성 후좌굴 해석을 수행하였다. 이를 위해 이전 연구를 발전시켜 다양한 명시적 알고리즘의 호장법과 명시적, 묵시적 해석법에 동시에 적용 가능한 반강접 탄소성 공간프레임요소를 제안하였다. 다양한 명시적 호장법은 예측단계와 수렴단계에 명시적 해석법인 동적이완법을 적용한 것을 의미한다. 따라서 명시적 호장법에는 명시적(예측단계)-명시적(예측단계) 호장법, 명시적(예측단계)-묵시적(수렴단계) 호장법, 묵시적(예측단계)-명시적(수렴단계) 호장법으로 구분된다. 또한 명시적 호장법에 적용 가능하도록 수정된 반강접 탄소성 공간프레임요소는 오일러리안 유한변형이론에 의해 강체회전변형을 고려하였기 때문에 대변위가 발생하는 기하학적 비선형 문제에 적용될 수 있고, 완전 탄소성 소성힌지 알고리즘에 의한 재료적 비선형성을 고려하였으며, 부재내부에 정적 응축된 회전 및 축방향 성분의 선형 스프링에 의해 접합부 반강접 특성을 반영하였다. 제안된 해석법을 이용하여 검증예제를 수행함으로써 본 연구에서 제안된 다양한 명시적 호장법 및 공간프레임요소의 정확성을 검증한다.

강체 단부 보요소의 개발 및 브라켓이 있는 골조 구조의 3차원 해석 단순화를 위한 적용 (Development of a Rigid-ended Beam Element and Its Application to Simplify 3-Dimensional Analysis of Bracketed Frame Structures)

  • 서승일;임성준
    • 대한조선학회논문집
    • /
    • 제34권3호
    • /
    • pp.76-84
    • /
    • 1997
  • 초기설계 단계에서는 선체구조 강도의 신속한 해석을 위해 보요소를 사용한 유한요소 해석이 일반적으로 사용된다. 선체구조를 보요소로 모델링할 때, 브라켓은 해석의 간편화를 위해 강체 요소로 표시된다. 강체 단부의 길이(=span point)는 세 가지 관점 - 굽힘, 전단, 축 변형 - 에 따라서 결정된다. 본 논문에서는, 새로운 2차원 보요소를 개발하였고, 2차원 해석으로 3차원 해석을 대신할 수 있는 방법을 제안하였다. '강체 단부 보요소' 라고 명명된 이 보요소는 한 요소 내에서 세 종류의 span point 효과를 모두 고려할 수 있는데, 이것은 보통의 보요소에서는 불가능한 것이다. 강체 단부 보요소를 사용한 Portal frame 해석결과는 membrane 해석결과와 잘 일치한다. 그리고, 영향계수를 사용한 2단계 해석을 포함하는 준 3차원 해석결과는 좋은 정확도를 보이고 있다. 강체 단부 보요소와 준 3차원 해석방법을 사용한 구조해석은 브라켓에 해당하는 요소가 필요치 않고, 3차원 해석을 단순화시킬 수 있었기 때문에 좋은 계산효율을 가진 것으로 판명되었다.

  • PDF

Effects of RHS face deformation on the rigidity of beam-column connection

  • Hadianfard, M.A.;Rahnema, H.
    • Steel and Composite Structures
    • /
    • 제10권6호
    • /
    • pp.489-500
    • /
    • 2010
  • The rigid connections of I-beams to Rectangular Hollow Sections (RHS) in steel structures usually behave as semi-rigid connection. This behavior is directly related to the column face deformation. The deformation in the wall of RHS column in the connection zone causes a relative rotation between beam end and column axis, which consequently reduces the rigidity of beam-column connection. In the present paper, the percentages of connection rigidity reduction for serviceability conditions are evaluated by using the finite element analysis. Such percentages for RHS columns without internal stiffeners are considerable, and can be calculated from presented graphs.

Generalized beam-column finite element on two-parameter elastic foundation

  • Morfidis, K.;Avramidis, I.E.
    • Structural Engineering and Mechanics
    • /
    • 제21권5호
    • /
    • pp.519-537
    • /
    • 2005
  • A new generalized Bernoulli/Timoshenko beam-column element on a two-parameter elastic foundation is presented herein. This element is based on the exact solution of the differential equation which describes the deflection of the axially loaded beam resting on a two-parameter elastic foundation, and can take into account shear deformations, semi - rigid connections, and rigid offsets. The equations of equilibrium are formulated for the deformed configuration, so as to account for axial force effects. Apart from the stiffness matrix, load vectors for uniform load and non-uniform temperature variation are also formulated. The efficiency and usefulness of the new element in reinforced concrete or steel structures analysis is demonstrated by two examples.

Harmony search based, improved Particle Swarm Optimizer for minimum cost design of semi-rigid steel frames

  • Hadidi, Ali;Rafiee, Amin
    • Structural Engineering and Mechanics
    • /
    • 제50권3호
    • /
    • pp.323-347
    • /
    • 2014
  • This paper proposes a Particle Swarm Optimization (PSO) algorithm, which is improved by making use of the Harmony Search (HS) approach and called HS-PSO algorithm. A computer code is developed for optimal sizing design of non-linear steel frames with various semi-rigid and rigid beam-to-column connections based on the HS-PSO algorithm. The developed code selects suitable sections for beams and columns, from a standard set of steel sections such as American Institute of Steel Construction (AISC) wide-flange W-shapes, such that the minimum total cost, which comprises total member plus connection costs, is obtained. Stress and displacement constraints of AISC-LRFD code together with the size constraints are imposed on the frame in the optimal design procedure. The nonlinear moment-rotation behavior of connections is modeled using the Frye-Morris polynomial model. Moreover, the P-${\Delta}$ effects of beam-column members are taken into account in the non-linear structural analysis. Three benchmark design examples with several types of connections are presented and the results are compared with those of standard PSO and of other researches as well. The comparison shows that the proposed HS-PSO algorithm performs better both than the PSO and the Big Bang-Big Crunch (BB-BC) methods.

용탕직접압연공정의 초기조건예측 및 냉각로울 설계 (A Cooling Roll Design and Prediction of Initial Conditions for Direct Rolling Process of Molten Metal)

  • 강충길;김영도
    • 소성∙가공
    • /
    • 제4권3호
    • /
    • pp.233-244
    • /
    • 1995
  • Rolling force in the direct rolling(or twin-roll strip continuous casting) process fo semi-solid material has been computed using rigid-viscoplastic finite element method. Temperature distributions for calculations of rolling force and roll deformation are obtained from thermofluid analysis. Three dimensional roll deformation analysis has also been performed by using commercial package ANSYS. From the results, behavior of metal flow, rolling force and roll deformation have been investigated according to the process conditions of semi-solid direct rolling.

  • PDF

횡하중을 받는 반강접 철골 골조의 유연도에 관한 연구( I ) -접합부 해석모형을 중심으로- (A Study on the Flexibility of Semi-Rigid Steel Frames under Lateral Loadings( I ))

  • 강철규;한영철;이갑조
    • 한국강구조학회 논문집
    • /
    • 제8권3호통권28호
    • /
    • pp.127-137
    • /
    • 1996
  • Connections as basic elements and an integrated part of a steel frame has an effect on the frame's performance. Conventional analysis and design techniques are based on either idealized fixed or pinned conditions. In fact, the use of rigid or pinned connection model in steel frame analysis serves the purpose of simplifying the analysis and design processes, but all connections used in current pratice possess stiffness and transfer moment which fall between the extreme cases of fully rigid and ideally pinned. To predict the behavior of the semi-rigid steel frames, it is necessary to predict the moment-rotation behavior of the beam-to-column connections. In this research, prediction equation for moment-rotation behavior of the beam-to-column connection is suggested and the effect of design parameters has investigated. Prediction model, in a nondimensional form shows the moment-rotation characteristic for connections. It is composed of the curve fitting power function using standardization constant K and 4 parameter $KM_o$, ${\theta}_0$, b, n based on the pretest result about moment-rotation behavior of connection.

  • PDF

In-plane structural analysis of blind-bolted composite frames with semi-rigid joints

  • Waqas, Rumman;Uy, Brian;Wang, Jia;Thai, Huu-Tai
    • Steel and Composite Structures
    • /
    • 제31권4호
    • /
    • pp.373-385
    • /
    • 2019
  • This paper presents a useful in-plane structural analysis of low-rise blind-bolted composite frames with semi-rigid joints. Analytical models were used to predict the moment-rotation relationship of the composite beam-to-column flush endplate joints that produced accurate and reliable results. The comparisons of the analytical model with test results in terms of the moment-rotation response verified the robustness and reliability of the model. Abaqus software was adopted to conduct frame analysis considering the material and geometrical non-linearities. The flexural behaviour of the composite frames was studied by applying the lateral loads incorporating wind and earthquake actions according to the Australian standards. A wide variety of frames with a varied number of bays and storeys was analysed to determine the bending moment envelopes under different load combinations. The design models were finalized that met the strength and serviceability limit state criteria. The results from the frame analysis suggest that among lateral loads, wind loads are more critical in Australia as compared to the earthquake loads. However, gravity loads alone govern the design as maximum sagging and hogging moments in the frames are produced as a result of the load combination with dead and live loads alone. This study provides a preliminary analysis and general understanding of the behaviour of low rise, semi-continuous frames subjected to lateral load characteristics of wind and earthquake conditions in Australia that can be applied in engineering practice.

강-열점소성 유한요소법을 이용한 반용융단조시 성형인자들의 영향에 관한 연구 (A Study on Effect of Forming Parameters in Semi-Solid Forging by Rigid-Thermoviscoplastic Finite Element Method)

  • 윤종훈;김낙수;임용택;이준두
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 1998년도 춘계학술대회논문집
    • /
    • pp.179-184
    • /
    • 1998
  • Semi-solid forging can be applied in industry only with enough knowledge of the effects of the forming parameters related with the process and their exact control which can be obtained by empirical or numerical methods. In the current study, the effects of process variables on semi-solid forging are discussed based on mainly numerical results. Die preheating temperature, initial solid fraction of the workpiece, and die velocity were selected as process variables, and numerical analyses using a rigid-thermoviscoplastic finite element approach that considered the release of latent heat due to phase change were carried out. In the analyses, a proposed flow stress material characterization and a solid fraction updating algorithm were employed. The obtained results from numerical analysis are discussed and are compared with some experimental observations.

  • PDF

A numerical investigation of seismic performance of large span single-layer latticed domes with semi-rigid joints

  • Zhang, Huidong;Han, Qinghua
    • Structural Engineering and Mechanics
    • /
    • 제48권1호
    • /
    • pp.57-75
    • /
    • 2013
  • It is still inadequate for investigating the highly nonlinear and complex mechanical behaviors of single-layer latticed domes by only performing a force-based demand-capacity analysis. The energy-based balance method has been largely accepted for assessing the seismic performance of a structure in recent years. The various factors, such as span-to-rise ratio, joint rigidity and damping model, have a remarkable effect on the load-carrying capacity of a single-layer latticed dome. Therefore, it is necessary to determine the maximum load-carrying capacity of a dome under extreme loading conditions. In this paper, a mechanical model for members of the semi-rigidly jointed single-layer latticed domes, which combines fiber section model with semi-rigid connections, is proposed. The static load-carrying capacity and seismic performance on the single-layer latticed domes are evaluated by means of the mechanical model. In these analyses, different geometric parameters, joint rigidities and roof loads are discussed. The buckling behaviors of members and damage distribution of the structure are presented in detail. The sensitivity of dynamic demand parameters of the structures subjected to strong earthquakes to the damping is analyzed. The results are helpful to have a better understanding of the seismic performance of the single-layer latticed domes.