• Title/Summary/Keyword: semi-rigid analysis

Search Result 193, Processing Time 0.023 seconds

The Stability of Steel Unbraced Frames Considering Nonlinear Behavior of Connections (접합부 비선형 거동을 고려한 강구조 비가새 골조의 안정성)

  • Kim, Hee Dong
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.4 s.77
    • /
    • pp.469-479
    • /
    • 2005
  • The nonlinear behavior of a connection has an influence on the behavior (the $P-\Delta$ effect) and the stability of a steel unbraced frame when a semi-rigid connection is applied as a beam-to-column connection. Therefore, the effects of a connection's non-linear behavior on the behavior and stability of a steel unbraced frame were investigated using second-order inelastic analysis, after which the main influence factors and their behavioral tendencies were studied. The study results showed that the nonlinear behavior of a connection directly affects the stability of a steel unbraced frame, and that the main influence factors are the rotational stiffness of the connection and the location of a semi-rigid connection.

Effect of connection modeling on the seismic response of steel braced non-moment resisting frames

  • Bagheri, Saman;Tabrizi, Navid Vafi
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.591-601
    • /
    • 2018
  • Non-moment beam-to-column connections, which are usually referred to as simple or shear connections, are typically designed to carry only gravity loads in the form of vertical shears. Although in the analysis of structures these connections are usually assumed to be pinned, they may provide a small amount of rotational stiffness due to the typical connection details. This paper investigates the effects of this small rotational restraint of simple beam-to-column connections on the behavior and seismic response of steel braced non-moment resisting frames. Two types of commonly used simple connections with bolted angles, i.e., the Double Web angle Connection (DWC) and Unstiffened Seat angle Connection (USC) are considered for this purpose. In addition to the pinned condition - as a simplified representation of these connections - more accurate semi-rigid models are established and then applied to some frame models subjected to nonlinear pushover and nonlinear time history analyses. Although the use of bracing elements generally reduces the sensitivity of the global structural response to the behavior of connections, the obtained results indicate considerable effects on the local responses. Namely, our results show that consideration of the real behavior of connections is essential in designing the column elements where the pin-connection assumption significantly underestimates design of outer columns of upper stories.

Nonlinear finite element analysis of top- and seat-angle with double web-angle connections

  • Kishi, N.;Ahmed, A.;Yabuki, N.;Chen, W.F.
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.201-214
    • /
    • 2001
  • Four finite element (FE) models are examined to find the one that best estimates moment-rotation characteristics of top- and seat-angle with double web-angle connections. To efficiently simulate the real behavior of connections, finite element analyses are performed with following considerations: 1) all components of connection (beam, column, angles and bolts) are discretized by eight-node solid elements; 2) shapes of bolt shank, head, and nut are precisely taken into account in modeling; and 3) contact surface algorithm is applied as boundary condition. To improve accuracy in predicting moment-rotation behavior of a connection, bolt pretension is introduced before the corresponding connection moment being surcharged. The experimental results are used to investigate the applicability of FE method and to check the performance of three-parameter power model by making comparison among their moment-rotation behaviors and by assessment of deformation and stress distribution patterns at the final stage of loading. This research exposes two important features: (1) the FE method has tremendous potential for connection modeling for both monotonic and cyclic loading; and (2) the power model is able to predict moment-rotation characteristics of semi-rigid connections with acceptable accuracy.

Efficient Analysis of Shear Wall Strustures with Pilotis considering the in-plane stiffness of the floor slabs (바닥슬래브의 면내강성을 고려한 필로티 구조물의 효율적인 거동분석)

  • Kim Hyun-Su;Kim Hye-Sook;Kim Hyun-Jung;Lee Dong-Guen
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.865-872
    • /
    • 2006
  • Recently, many apartment buildings in the shear wall system often has pilotis in the lower story to meet the architectural needs. If the lateral force resisting system consists of shear walls supported by columns and beams. the discontinuity at the lowest level with pilotis results in the vertical irregularity with strength and stiffness. So, there are needs to be considered tile analysis and design about column and beam bellow shear walls and the behavior and stress condition of structure by stiffness change being generated at shear walls. The purpose of this paper is to investigate the behavior of shear wall structures with pilotis using the floors modeled as rigid diaphragm or semi rigid diaphragm. Through analyses, after estimating values of the story drift, natural period, stress condition of shear walls and the forces of column, we inferred how the behavior of shear wall structures with pilotis was influenced by the floor stiffness.

  • PDF

A Study on the Analytical Technique of Stability and Buckling Characteristics of the Single Layer Latticed Domes (단층 래티스돔의 안정해석기법 및 좌굴특성에 관한 연구)

  • Han, Sang-Eul
    • Computational Structural Engineering
    • /
    • v.9 no.3
    • /
    • pp.209-216
    • /
    • 1996
  • The primary objective of this paper is to grasp many characteristics of buckling behavior of latticed spherical domes under various conditions. The Arc-Length Method proposed by E.Riks is used for the computation and evaluation of geometrically nonlinear fundamental equilibrium paths and bifurcation points. And the direction of the path after the bifurcation point is decided by means of Hosono's concept. Three different nonlinear stiffness matrices of the Slope-Deflection Method are derived for the system with rigid nodes and results of the numerical analysis are examined in regard to geometrical parameters such as slenderness ratio, half-open angle, boundary conditions, and various loading types. But in case of analytical model 2 (rigid node), the post-buckling path could not be surveyed because of Newton-Raphson iteration process being diversed on the critical point since many eigenvalues become zero simultaneously.

  • PDF

A Comparison of Blast Load in a Simplified Analytical Model of Rigid Column (강체 기둥의 단순 해석 모델에서의 폭발 하중 비교)

  • Park, Hoon
    • Explosives and Blasting
    • /
    • v.37 no.3
    • /
    • pp.1-12
    • /
    • 2019
  • The analysis methods of blast analysis models are classified into direct analysis and indirect analysis, and the latter is divided into semi-empirical and numerical analysis methods. In order to evaluate the applicability of the ELS blast analysis program, which is a program for analyzing the semi-empirical models, this study selected a simplified analytical model and examined the blast load characteristics of free-air burst explosion and surface burst explosion by using AT-Blast, RC-Blast, and Kinney and Graham's empirical equations, which are the semi-empirical analysis programs. As a result of analyzing the explosion pressure for the scaled distance and the incidence angle for the simplified analytical model, an appropriate analysis can be performed when the range of the scaled distance in the free-air burst explosion analysis was 0.3~0.461 and when the range of the scaled distance in the surface burst explosion analysis was 0.378~0.581. In terms of the incidence angle, the results analyzed within $45^{\circ}$ were considered to be appropriate.

Finite Element Analysis for the Drawing of Square Rod from Round Bar (원형봉에서 정사각재 인발공정의 유한요소 해석)

  • Choi, Y.;Kim, H.C.;Kim, B.M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1998.03a
    • /
    • pp.205-209
    • /
    • 1998
  • Unlike the drawing of round section from round bar, the shaped drawing like polygonal section is known to have influence not only drawing stress but also comer filling. Therefore, this study analyze the drawing process of suqare rod from round bar using nonsteady state rigid-plastic FEM. To investigate effects of process variables of the drawing process of square rod from round bar, FE-simulations with variety of reduction in area and semi-die angle for a given frictional condition have been conduction. By this results, it has to suggest optimal process condition on the drawing stress and the comer filling. In addition, it has determined forming limit considering necking and bulging.

  • PDF

A Finite Element Model for Predicting the Microstructural Evolution in Hot Rolling (열간압연시 미세조직 예측을 위한 유한요소 모델)

  • Cho, Hyunjoong;Kim, Naksoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.14 no.9
    • /
    • pp.90-100
    • /
    • 1997
  • A full three-dimensional thermo-coupled rigid-viscoplastic finite element method and the currently developed microstructural evolution system which includes semi-empirical equations suggested by different research groups were used together to form an integrated system of process and micro- structure simulation of hot rolling. The distribution and time histroy of the momechanical variables such as temperature, strain, strain rate, and time during pass and between passes were obtained from the finite element analysis of multipass hot rolling processes. The distribution of metallurgical variables were calculated on the basis of instantaneous thermomechanical data. For the verification of this method the evolution of microstructure in plate rolling and shape rolling was simulated and their results were compared with the data available in the literature. Consequently, this approach makes it possible to describe the realistic evolution of microstructure by avoiding the use of erroneous average value and can be used in CAE of multipass hot rolling.

  • PDF

Contact analysis in functionally graded layer loaded with circular two punches

  • Muhammed T. Polat;Alper Polat
    • Computers and Concrete
    • /
    • v.33 no.1
    • /
    • pp.13-25
    • /
    • 2024
  • In this study, contact analysis in a functionally graded (FG) layer loaded with two circular punches is solved using the finite element method (FEM). The problem is consisted of a functionally graded layer that resting on an elastic semi-infinite plane and is loaded with two rigid punches of circular geometry. External loads P and Q are transferred to the layer via two rigid punches. The finite element model of the functionally graded layer is created using the ANSYS package program and a 2-dimensional analysis of the problem is analyzed. The contact lengths, obtained as a result of the analysis are compared with the analytical solution in the literature. In the study, the effects of parameters such as distances between punches, loads, inhomogenity parameter on contact zones, initial separation loads and distances, normal stresses, stresses across depth and contact stresses are investigated. As a result, in this study, it can be said that the magnitude of the stresses occurring in the FG layer is less than the homogeneous layer, therefore the life of FG materials will be longer than the homogeneous layer. When the distance between the punches is 2.25, the initial separation distance is 6.98, and when the distance between the punches is 4, the initial separation distance decreases to 6.10. In addition, when the load increased in the second punch, the initial separation load decreased from 55 to 18. The obtained results are presented in the form of graphs and tables.

Seismic Analysis of Mid Rise Steel Moment Resisting Frames with Relative Stiffness of Connections and Beams (접합부와 보의 상대강성을 고려한 중층 철골 모멘트 골조의 내진해석)

  • Ha, Sung-Hwan;Kang, Cheol-Kyu;Han, Hong-Soo;Han, Kweon-Gyu;Choi, Byong-Jeong
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.5
    • /
    • pp.595-606
    • /
    • 2011
  • This study was conducted to investigate the seismic behavior of steel member resisting frames considering the relative stiffness of the connection and beams. Six-story steel moment frames were designed to study the seismic behavior. The connections were classified into Double Web-Angle connections (DWAs), Top- and Seat-angles with double Web-angles (TWSs), FEMA-Test Summary No. 28, Specimen ID: UCSD-6 (SAC), and Fully Restrained (FR). The rotational stiffness of the semi-rigid connections was estimated using the Three-Parameter Power Model adopted by Chen and Kishi. The relative stiffness, which is the ratio of the rotational stiffness of the connections to the stiffness of the beams, was used. Push-over, repeated loading, and time history analysis were performed for all the frames. The seismic behavior of each frame was analyzed with the story drift, plastic hinge rotation, and hysteretic energy distribution.