• Title/Summary/Keyword: semi-rigid analysis

Search Result 193, Processing Time 0.02 seconds

A Study on External Effects on Peeling-off Behavior of Adhesive Tape (접착 테이프 박리거동에 미치는 외부효과에 관한 연구)

  • Han, Won Heum;Jung, Hyung Sik;Lee, Moon Ho
    • Journal of Adhesion and Interface
    • /
    • v.13 no.1
    • /
    • pp.9-16
    • /
    • 2012
  • In order to describe external effects on the behavior of the adhesive tape, the semi-rigid body cylinder chain model for adhesive tape has been proposed as follows. Firstly the behavior of the tape is in detail investigated while it's being pulled off from the plate, and subsequently a relevant phenomenological model is designed. Then all the contributors affecting the force to peel out the tape from plate (hereafter, the pull out force) are clearly defined and their sensitivity analyses are made to set up the experimental reference condition, under which the angular dependence of the pull out force is measured in every $10^{\circ}$. The experimental data turn out to be in good agreement with the theoretical ones by our model within the measurement error, and the effects due to other factors are proved to be well explained from the phenomenological viewpoint. From these results, the concept of this study might be expected to be very useful for the test and evaluation of PSA types of adhesive tape.

Evaluation of Stiffness Ratio of Wooden Mortise and Tenon Joint on Vertical Loading (수직 하중에 따른 목재 짜맞춤 접합부의 강성도 평가)

  • Park, Chun-Young;Lee, Jun-Jae;Kim, Gwang-Chul
    • Journal of the Korea Furniture Society
    • /
    • v.23 no.3
    • /
    • pp.290-297
    • /
    • 2012
  • Recently, interest in wooden construction have been growing by increasing needs and demands for eco-friendly and traditional wooden building(Hanok). Especially, Hanok has the technical development in manufacturing the mortise-tenon joint without fasteners(precut), so it could be called to modernization, industrialization and popularization. But the structural design and analysis of the structure were not regulated and had the difficulty to consider the variation of wooden member and to conduct the difficulty in the structural analysis and the design of the joint. In this study, the stiffness ratio of wooden mortise and tenon joint was evaluated according to the vertical loading, lintel and loading speed. The joint was distinguished in semi-rigid joint regardless of their factors. The stiffness ratio was 0.40 in vertical loading, 0.50 without vertical loading and 0.44 in horizontal loading with high speed. This study would be utilized to the structural analysis and design with structural analysis and design program.

  • PDF

Analysis Model for Approximate Evaluation of Stiffness for Semi-Rigid Connection of Wooden Structures (목조 구조물 접합부의 강성에 대한 근사평가를 위한 해석모델)

  • Cho, So-Hoon;Lee, Heon-Woo;Park, Moon-Jae;Kim, Taejin;Kim, Jong-Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.28 no.1
    • /
    • pp.93-100
    • /
    • 2015
  • Modern wooden structures usually are connected with steel fastener type connectors. And joints using multiple connectors in wooden structures will form semi-rigid connection. If connection in wooden structure would be designed to be pinned joint, the underestimate for loads transmitted through connection, would result in the deficient capacity of resistance in connection. And if joints in wooden structures would be assumed to be fully-rigid joint, amount of fasteners needed at the connection could be excessively increased. It will give a bad effect in the view of beauty, constructability and economy. Estimate for the reasonable stiffness of connection might be essential in design of reasonable connection in wooden structure. This paper will suggest analysis modelling technique that can represent approximate stiffness of connections using a common analysis program for double shear connection in order to give help in performing easily the design of wooden structure. It is verified that the suggested approximate analysis modelling technique could represent the behavior in connection by comparing the analysis results with test results for tensile, bending moment.

Dynamic analysis of semi-rigidly connected and partially embedded piles via the method of reverberation-ray matrix

  • Yan, Wei;Chen, W.Q.
    • Structural Engineering and Mechanics
    • /
    • v.42 no.2
    • /
    • pp.269-289
    • /
    • 2012
  • Free vibration and dynamic responses of piles semi-rigidly connected with the superstructures are investigated. Timoshenko beam theory is employed to characterize the pile partially embedded in a two-parameter elastic foundation. The formulations for the method of reverberation-ray matrix (MRRM) are then derived to investigate the dynamics of the pile with surface cracks, which are modeled as massless rotational springs. Comparison with existent numerical and experimental results indicates the proposed method is very effective and accurate for dynamic analysis, especially in the high frequency range. Finally, the effects of some physical parameters on the natural frequencies, frequency responses and transient responses of the piles are studied.

The effects of beam-column connections on behavior of buckling-restrained braced frames

  • Hadianfard, Mohammad Ali;Eskandari, Fateme;JavidSharifi, Behtash
    • Steel and Composite Structures
    • /
    • v.28 no.3
    • /
    • pp.309-318
    • /
    • 2018
  • Buckling Restrained Braced (BRB) frames have been widely used as an efficient seismic load resisting system in recent years mostly due to their symmetric and stable hysteretic behavior and significant energy dissipation capacity. In this study, to provide a better understanding of the behavior of BRB frames with various beam-column connections, a numerical study using non-linear finite element (FE) analysis is conducted. All models are implemented in the Abaqus software package following an explicit formulation. Initially, the results of the FE model are verified with experimental data. Then, diverse beam-column connections are modeled for the sake of comparison from the shear capacity, energy dissipation and frame hysteresis behavior points of view until appropriate performance is assessed. The considered connections are divided into three different categories: (1) simple beam-column connections including connection by web angle and connection by seat angle; (2) semi-rigid connection including connection by web and seat angles; and (3) rigid beam-column connections by upper-lower beam plates and beam connections with web and flange splices. Results of the non-linear FE analyses show that these types of beam-column connections have little effect on the maximum story drift and shear capacity of BRB frames. However, the connection type has a significant effect on the amount of energy dissipation and hysteresis behavior of BRB frames. Also, changes in length and thickness of the angles in simple and semi-rigid connections and changes in length and thickness of plates in rigid connections have slight effects (less than 4%) on the overall frame behavior.

Curved-quartic-function elements with end-springs in series for direct analysis of steel frames

  • Liu, Si-Wei;Chan, Jake Lok Yan;Bai, Rui;Chan, Siu-Lai
    • Steel and Composite Structures
    • /
    • v.29 no.5
    • /
    • pp.623-633
    • /
    • 2018
  • A robust element is essential for successful design of steel frames with Direct analysis (DA) method. To this end, an innovative and efficient curved-quartic-function (CQF) beam-column element using the fourth-order polynomial shape function with end-springs in series is proposed for practical applications of DA. The member initial imperfection is explicitly integrated into the element formulation, and, therefore, the P-${\delta}$ effect can be directly captured in the analysis. The series of zero-length springs are placed at the element ends to model the effects of semi-rigid joints and material yielding. One-element-per-member model is adopted for design bringing considerable savings in computer expense. The incremental secant stiffness method allowing for large deflections is used to describe the kinematic motion. Finally, several problems are studied in this paper for examining and validating the accuracy of the present formulations. The proposed element is believed to make DA simpler to use than existing elements, which is essential for its successful and widespread adoption by engineers.

Properties of SPE-Based Cement Grout for Semi-Rigid Pavements (Sulfur Polymer Emulsion을 활용한 반강성 포장용 시멘트 주입재의 특성)

  • Lee, Byung-Jae;Lee, Jun;Hyun, Jung-Hwan;Kim, Yun-Yong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.4
    • /
    • pp.57-65
    • /
    • 2013
  • The development of the oil refining industry has resulted in an annual 120 million tons of sulphur, which is a by-product of the desulphurization process. To exploit this abundance, the applications of sulphur must be expanded. as excellent durability of reuse of leftover sulphur which has high potential for utilization in construction materials, the study is actively in progress. Meanwhile, there has been active research on semi-rigid pavements that draw on the strengths and overcome the weaknesses of asphalt and concrete pavements. Acrylate is used to prevent cracking but involves a high cost, thus, an alternative material is required. As such, this study presents methods on the reuse of leftover sulphur and examines the engineering performance of grout containing sulfur polymer emulsion (SPE) for use in semi-rigid pavements. Our analysis shows that grout in which 30% of acrylate is replaced with SPE has superior properties in terms of time of flow and strength compared to regular grout. However, performance declined when more than 50% of acrylate was replaced by SPE, indicating that the optimum replacement level is 30%. Through SEM analysis, we found that grout with utra harding cement in this study at three hours had similar hydration properties to that of Type 1 Ordinary Portland Cement (OPC) at seven days, and maintained the properties regardless of grout containing SPE. OPC and grout with a replacement level of 30% displayed similar levels of chloride invasion resistance, whereas grout without SPE was far less resistant. Within the scope of this paper, the optimum replacement level of acrylate with SPE was found to be 30% in consideration of various properties such as time of flow, strength, and chloride invasion resistance.

A Numerical Study on the Semi-Rigid Behavior of Steel Tubular Column to H Beam Connection with Exterior Square-Plate Diaphragms (직각판형 외다이아프램 각형강관기둥-H형강보 접합부의 방강접거동에 관한 해석적연구)

  • Chae, Yong-Soo;Choi, Sung-Mo;Kim, Dong-Kyu
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.3
    • /
    • pp.289-299
    • /
    • 2001
  • The purpose of this study was to analyze the characteristics of semi-igid behavior of the steel tubular column to H-beam connection reinforced with exterior square-plate diaphragms and to check the main parameters that affect this behavior. Steel tube connections without interior diaphragm and/or complicated exterior diaphragm show the considerable flexibility due to out of-plane deformation of tube flange. For the exact analysis well-reflected the effect of this flexibility on the overall frame performance. it need to find out the moment-rotation curve function that well trace the result of experiment in the whole region and the function should be simply transformed into an adequate form for the nonlinear analysis program. After collecting several test data same to the connection type considered. we carried out FEM analysis using ANSYS for the assumed beam-to-column connection developed from the simple tension test and the results are compared with experimental values. Based on the parametric study. we proposed the moment-relation curve function and performed the multiple-regression analysis procedure for three parameters consisting of this function with the main geometric parameter of this connection type.

  • PDF

Ductility demands and reduction factors for 3D steel structures with pinned and semi-rigid connections

  • Llanes-Tizoc, Mario D.;Reyes-Salazar, Alfredo;Ruiz, Sonia E.;Bojorquez, Eden;Bojorquez, Juan;Leal Graciano, Jesus M.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.469-485
    • /
    • 2019
  • A numerical investigation regarding local (${\mu}_L$) and story (${\mu}_S$) ductility demand evaluation of steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF), is conducted in this study. The interior connections are modeled, firstly as perfectly pinned (PP), and then as semi-rigid (SR). Three models used in the SAC steel project, representing steel buildings of low-, mid-, and high-rise, are considered. The story ductility reduction factor ($R_{{\mu}S}$) as well as the ratio ($Q_{GL}$) of $R_{{\mu}S}$ to ${\mu}_L$ are calculated. ${\mu}_L$ and ${\mu}_S$, and consequently structural damage, at the PMRF are significant reduced when the usually neglected effect of SR connections is considered; average reductions larger than 40% are observed implying that the behavior of the models with SR connections is superior and that the ductility detailing of the PMRF doesn't need to be so stringent when SR connections are considered. $R_{{\mu}S}$ is approximately constant through height for low-rise buildings, but for the others it tends to increase with the story number contradicting the same proportion reduction assumed in the Equivalent Static Lateral Method (ESLM). It is implicitly assumed in IBC Code that the overall ductility reduction factor for ductile moment resisting frames is about 4; the results of this study show that this value is non-conservative for low-rise buildings but conservative for mid- and high-rise buildings implying that the ESLM fails evaluating the inelastic interstory demands. If local ductility capacity is stated as the basis for design, a value of 0.4 for $Q_{GL}$ seems to be reasonable for low- and medium-rise buildings.

An Experimental Study on the Behavior of Connections of Thin-Walled Cold-Formed Steel Section Frames (박판 냉간성형형강 골조의 접합부 거동에 관한 실험적 연구)

  • Kwon, Young Bong;Cho, Jong Su;Song, Jun Yeup;Kim, Gap Deuk
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.3
    • /
    • pp.281-290
    • /
    • 2003
  • A series of connection tests of portal frames which were composed of cold-formed steel studs and rafters was carried out to study the moment-rotation relation, the rotational rigidity, and the yield and the ultimate moment of the connections. The main factors of the tests were the thickness, the shape of the connecting members which were made of mild steel, and the torsional restraints of the test specimens. The test results were compared with those obtained through the non-linear analysis, for verification. The secant stiffness estimated from the experimental moment-rotation curve was proposed for the rotational rigidity of semi-rigid connections, and its validity was verified in the structural frame analysis.