• Title/Summary/Keyword: semi-linear system

Search Result 122, Processing Time 0.029 seconds

Parametric pitch instability investigation of Deep Draft Semi-submersible platform in irregular waves

  • Mao, Huan;Yang, Hezhen
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.8 no.1
    • /
    • pp.13-21
    • /
    • 2016
  • Parametric pitch instability of a Deep Draft Semi-submersible platform (DDS) is investigated in irregular waves. Parametric pitch is a form of parametric instability, which occurs when parameters of a system vary with time and the variation satisfies a certain condition. In previous studies, analyzing of parametric instability is mainly limited to regular waves, whereas the realistic sea conditions are irregular waves. Besides, parametric instability also occurs in irregular waves in some experiments. This study predicts parametric pitch of a Deep Draft Semi-submersible platform in irregular waves. Heave motion of DDS is simulated by wave spectrum and response amplitude operator (RAO). Then Hill equation for DDS pitch motion in irregular waves is derived based on linear-wave theory. By using Bubnov-Galerkin approach to solve Hill equation, the corresponding stability chart is obtained. The differences between regular-waves stability chart and irregular-waves stability chart are compared. Then the sensitivity of wave parameters on DDS parametric pitch in irregular waves is discussed. Based on the discussion, some suggestions for the DDS design are proposed to avoid parametric pitch by choosing appropriate parameters. The results indicate that it's important and necessary to predict DDS parametric pitch in irregular waves during design process.

Bridges dynamic analysis under earthquakes using a smart algorithm

  • Chen, Z.Y.;Meng, Yahui;Wang, Ruei-yuan;Chen, Timothy
    • Earthquakes and Structures
    • /
    • v.23 no.4
    • /
    • pp.329-338
    • /
    • 2022
  • This work addresses the optimization controller design problem combining the AI evolution bat (EB) optimization algorithm with a fuzzy controller in the practical application of a reinforced concrete frame structure. This article explores the use of an intelligent EB strategy to reduce the dynamic response of Lead Rubber Bearing (LRB) composite reinforced concrete frame structures. Recently developed control units for plant structures, such as hybrid systems and semi-active systems, have inherently non-linear properties. Therefore, it is necessary to develop non-linear control methods. Based on the relaxation method, the nonlinear structural system can be stabilized by properly adjusting the parameters. Therefore, the behavior of a closed-loop system can be accurately predicted by determining the behavior of a closed-loop system. The performance and durability of the proposed control method are demonstrated by numerical simulations. The simulation results show that the proposed method is a viable and feasible control strategy for seismically tuned composite reinforced concrete frame structures.

Identification and Multivariable Iterative Learning Control of an RTP Process for Maximum Uniformity of Wafer Temperature

  • Cho, Moon-Ki;Lee, Yong-Hee;Joo, Sang-Rae;Lee, Kwang-S.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2606-2611
    • /
    • 2003
  • Comprehensive study on the control system design for a RTP process has been conducted. The purpose of the control system is to maintain maximum temperature uniformity across the silicon wafer achieving precise tracking for various reference trajectories. The study has been carried out in two stages: thermal balance modeling on the basis of a semi-empirical radiation model, and optimal iterative learning controller design on the basis of a linear state space model. First, we found through steady state radiation modeling that the fourth power of wafer temperatures, lamp powers, and the fourth power of chamber wall temperature are related by an emissivity-independent linear equation. Next, for control of the MIMO system, a state space modeland LQG-based two-stage batch control technique was derived and employed to reduce the heavy computational demand in the original two-stage batch control technique. By accommodating the first result, a linear state space model for the controller design was identified between the lamp powers and the fourth power of wafer temperatures as inputs and outputs, respectively. The control system was applied to an experimental RTP equipment. As a consequence, great uniformity improvement could be attained over the entire time horizon compared to the original multi-loop PID control. In addition, controller implementation was standardized and facilitated by completely eliminating the tedious and lengthy control tuning trial.

  • PDF

Vibration analysis thermally affected viscoelastic nanosensors subjected to linear varying loads

  • Ebrahimi, Farzad;Babaei, Ramin;Shaghaghi, Gholam Reza
    • Advances in nano research
    • /
    • v.6 no.4
    • /
    • pp.399-422
    • /
    • 2018
  • Unwanted vibration is an issue in many industrial systems, especially in nano-devices. There are many ways to compensate these unwanted vibrations based on the results of the past researches. Elastic medium and smart material etc. are effective methods to restrain unnecessary vibration. In this manuscript, dynamic analysis of viscoelastic nanosensor which is made of functionally graded (FGM) nanobeams is investigated. It is assumed that, the shaft is flexible. The system is modeled based on Timoshenko beam theory and also environmental condition, external linear varying loads and thermal loading effect are considered. The equations of motion are extracted by using energy method and Hamilton principle to describe the translational and shear deformation's behavior of the system. Governing equations of motion are extracted by supplementing Eringen's nonlocal theory. Finally vibration behavior of system especially the frequency of system is developed by implementation Semi-analytical differential transformed method (DTM). The results are validated in the researches that have been done in the past and shows good agreement with them.

Prediction of Bending Fatigue Life of Cracked Out-of-Plane Gusset Joint Repaired by CFRP Plates

  • Matsumoto, Risa;Komoto, Takafumi;Ishikawa, Toshiyuki;Hattori, Atsushi;Kawano, Hirotaka
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1284-1296
    • /
    • 2018
  • Carbon fiber reinforced polymer (CFRP), plates bonding repair method is one of the simple repair methods for cracked steel structures. In this study, the influence of width of CFRP plates on bending fatigue life of out-of-plane gusset joint strengthened with CFRP plates was investigated from the experimental and numerical point of view. In the bending fatigue test of cracked out-of-plane gusset joint strengthened with CFRP plates, the effect of width of CFRP plates on crack growth life was clarified experimentally. Namely, it was revealed that the crack growth life becomes larger with increasing the width of CFRP plates. In the numerical approach, the stress intensity factor (SIF) at the surface point of a semi-elliptical surface crack was estimated based on the linear fracture mechanics. Furthermore, the extended fatigue life of cracked out-of-plane gusset joint strengthened with CFRP plates was evaluated by using the estimated SIF at the surface point and the empirical formula of the aspect ratio of semi-elliptical crack. As the results of numerical analysis, the estimated fatigue life of the specimen strengthened with CFRP plates showed the good agreement with the test results.

Nonlinear frequency analysis of beams resting on elastic foundation using max-min approach

  • Bayat, Mahmoud;Bayat, Mahdi;Kia, Mehdi;Ahmadi, Hamid Reza;Pakar, Iman
    • Geomechanics and Engineering
    • /
    • v.16 no.4
    • /
    • pp.355-361
    • /
    • 2018
  • In this paper, nonlinear vibration of Euler-Bernoulli beams resting on linear elastic foundation is studied. It has been tried to prepare a semi-analytical solution for whole domain of vibration. Only one iteration lead us to high accurate solution. The effects of linear elastic foundation on the response of the beam vibration are considered and studied. The effects of important parameters on the ratio of nonlinear to linear frequency of the system are studied. The results are compared with numerical solution using Runge-Kutta $4^{th}$ technique. It has been shown that the Max-Min approach can be easily extended in nonlinear partial differential equations.

Development of an Automated Diffusion Scrubber-Conductometry System for Measuring Atmospheric Ammonia

  • Lee, Bo-Kyoung;Lee, Chong-Keun;Lee, Dong-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.32 no.6
    • /
    • pp.2039-2044
    • /
    • 2011
  • A semi-continuous and automated method for quantifying atmospheric ammonia at the parts per billion level has been developed. The instrument consists of a high efficiency diffusion scrubber, an electrolytic on-line anion exchange device, and a conductivity detector. Water soluble gases in sampled air diffuse through the porous membrane and are absorbed in an absorbing solution. Interferences are eliminated by using an anion exchange devises. The electrical conductivity of the solution is measured without chromatographic separation. The collection efficiency was over 99%. Over the 0-200 ppbv concentration range, the calibration was linear with $r^2$ = 0.99. The lower limit of detection was 0.09 ppbv. A parallel analysis of Seoul air over several days using this method and a diffusion scrubber coupled to an ion chromatography system showed acceptable agreement, $r^2$ = 0.940 (n = 686). This method can be applied for ambient air monitoring of ammonia.

Subsynchronous Vibration Behavior of Turbocharger Supported by Semi Floating Ring Bearing (세미 플로팅 링 베어링으로 지지된 터보차저의 Subsynchronous 진동 특성)

  • Lee, Donghyun;Kim, Youngcheol;Kim, Byungok;Ahn, Kookyoung;Lee, Youngduk
    • The KSFM Journal of Fluid Machinery
    • /
    • v.20 no.1
    • /
    • pp.15-20
    • /
    • 2017
  • The small turbocharger for the automotive application is designed to operate up to 200,000 rpm to increase system efficiency. Because of high rotation speed of turbocharger, floating ring bearing are widely adopted due to its low friction loss and high rotordynamic stability. This paper presents a linear and nonlinear analysis model for a turbocharger rotor supported by a semi-floating ring bearing. The rotordynamic model for the turbocharger rotor was constructed based on the finite element method and fluid film forces were calculated based on the infinitely short bearing assumption. In linear analysis, we considered fluid film force as stiffness and damping element and in nonlinear analysis, the fluid film force was calculated by solving the time dependent Reynolds equation. We verified the developed theoretical model by comparing to modal test results of test rotors. The analysis results show that there are two unstable modes, which are conical and cylindrical modes. These unstable modes appear as sub-synchronous vibrations in nonlinear analysis. In nonlinear analysis, frequency jump phenomenon demonstrated when vibration mode is changed from conical mode to cylindrical one. This jump phenomenon was also demonstrated in the test. However, the natural frequency measured in the test differs from those obtained using nonlinear analysis.

Inelastic Buckling Analysis of Frames with Semi-Rigid Joints (부분강절 뼈대구조의 비탄성 좌굴해석)

  • Min, Byoung Cheol
    • Journal of Korean Society of Steel Construction
    • /
    • v.26 no.3
    • /
    • pp.143-154
    • /
    • 2014
  • An improved method for evaluating effective buckling length of semi-rigid frame with inelastic behavior is newly proposed. Also, generalized exact tangential stiffness matrix with rotationally semi-rigid connections is adopted in previous studies. Therefore, the system buckling load of structure with inelastic behaviors can be exactly obtained by only one element per one straight member for inelastic problems. And the linearized elastic stiffness matrix and the geometric stiffness matrix of semi-rigid frame are utilized by taking into account 4th terms of taylor series from the exact tangent stiffness matrix. On the other hands, two inelastic analysis programs(M1, M2) are newly formulated. Where, M1 based on exact tangent stiffness matrix is programmed by iterative determinant search method and M2 is using linear algorithm with elastic and geometric matrices. Finally, in order to verify this present theory, various numerical examples are introduced and the effective buckling length of semi-rigid frames with inelastic materials are investigated.

GAUSSIAN QUADRATURE FORMULAS AND LAGUERRE-PERRON@S EQUATION

  • HAJJI S. EL;TOUIJRAT L.
    • Journal of applied mathematics & informatics
    • /
    • v.18 no.1_2
    • /
    • pp.205-228
    • /
    • 2005
  • Let I(f) be the integral defined by : $I(f) = \int\limits_{a}^{b} f(x)w(x)dx$ with f a given function, w a nonclassical weight function and [a, b] an interval of IR (of finite or infinite length). We propose to calculate the approximate value of I(f) by using a new scheme for deriving a non-linear system, satisfied by the three-term recurrence coefficients of semi-classical orthogonal polynomials. Finally we studies the Stability and complexity of this scheme.