• Title/Summary/Keyword: semi-die angle

Search Result 38, Processing Time 0.023 seconds

Variations of Metal Flow State and Hardness on the Direct Extrusion of Copper Clad Aluminum Rods (Cu-Al 층상 복합재료 직접압출시 금속의 유동상태와 경도 변화)

  • Kang, W.Y.;Yoon, Y.K.;Park, S.H.;Kim, H.N.
    • Proceedings of the KSME Conference
    • /
    • 2000.11a
    • /
    • pp.759-765
    • /
    • 2000
  • A composite material consists of two or more different material layers. Copper clad aluminum composite materials are being used for economic and structural reasons. This study is concerned with experimental investigation in the direct extrusion of copper clad aluminum rods through conical dies. The suggestion are given for the proper extrudability of copper clad aluminum rods via hot direct extrusion. This paper presents the variation of flow state and hardness at a variable of extrusion ratio and semi-angle of die. By measuring after and before extrusion radius ratio of Cu sleeve and Al core, proportional flow state has been considered. And also by measuring hardness, through extrusion way, a variation of hardness has been considered.

  • PDF

A Study on Material Characterization of Semi-Solid Materials (I) -Proposal of New Velocity Field for Upper Bound Analysis of Backward Extrusion- (반용융 재료의 물성치 평가에 관한 연구(I) -후방압출의 상계해석을 위한 동적 가용 속도장의 제안-)

  • 이주영;김낙수
    • Transactions of Materials Processing
    • /
    • v.8 no.4
    • /
    • pp.364-373
    • /
    • 1999
  • For material characterization of semi-solid materials, backward extrusion process, which has been used in forming of hollow-sectioned products, was analyzed by the upper bound analysis in the current study. The existing kinematically admissible velocity field was applied to steady state at which there was no change in the assumed regions of velocity field. For unsteady state, new velocity field, as a function of dead zone angle, was proposed. Through the whole analysis, fiction between die and workpiece was also considered. It has been studied how the process variables, such as friction factor and punch velocity, and material parameters, such as strength coefficient, strain rate sensitivity could affect on analysis results. Finally, by the comparison with the finite element analysis, the reliability and efficiency of the proposed velocity field were discussed.

  • PDF

An Upper Bound Solution of Tube Drawing (관인발의 상계해석)

  • 엄경근;이동녕
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 1996.03b
    • /
    • pp.40-47
    • /
    • 1996
  • An upper bound solution of tube drawing process using a fixed tapered plug has been obtained , which reduces to an solution for tube sinking by setting friction factor between tube and plug at zero. Effects of various process paraments have been discussed based on the solution.

  • PDF

The Direct Extrusion of Copper Clad Aluminum Composite Materials by Using the Conical Dies (원추형 다이를 이용한 Cu-Al 층상 복합재료의 직접압출)

  • Yun, Yeo-Gwon;Kim, Hui-Nam
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.25 no.10
    • /
    • pp.1541-1550
    • /
    • 2001
  • This paper describes experimental investigations in the direct extrusion of copper clad aluminum rods through conical dies. Composite materials consist of two or more different material layers. Copper clad aluminum composite materials are being used fur economic and structural purposes and the development of an efficient production method of copper clad aluminum composite material rods by extrusion is very important, It is necessary to know the conditions in which successful uniform extrusion ,and sound cladding may be carried out without any defects in the direct extrusion. There are several variables that have an influence on determining a sound clad extrusion. In order to investigate the influence of these parameters on the hot direct extrudability of the copper clad aluminum composite material rods, the experimental study have been performed with various extrusion temperatures, extrusion ratios and semi-cone angles of die. Subsequently, the microscopic inspection of interface bonding is carried out for extruded products. By measuring hardness, along extrusion way of products, a variation of hardness has been discussed. Proportional flow state has been considered by measuring radius ratio of Cu sleeve and Al core before and after extrusion.

Orientation Prediction of Lamella Structure of High Carbon steel in Wire Drawing (신선가공시 고탄소강 선재 층상구조의 정렬 예측)

  • Kim Hyun Soo;Bae Chul Min;Lee Chung Yeol;Kim Byung Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.10 s.175
    • /
    • pp.49-55
    • /
    • 2005
  • The objective of this study was presented with a prediction on the alignment of cementite in pearlite lamella structure of high carbon steel by means of finite-element method(FEM) simulation. Pearlite strcuture was characterized by its nano-sized microstructure feature of alternation ferrite and cementite. FEM simulations were performed based on a suitable FE model describing the boundary conditions and the material behavior. With the alignment of lamella structure in high carbon pearlite steel wire, material plastic behavior was taken into account on plastic deformation and alignment of cementite. The effects of many important parameters(reduction in area, semi-die angle, initial angle of cementite ) on wire drawing process were predicted by DEFORM-2D. As the results, the possibility of wire fracture could be considerably reduced and the productivity of final product could be more increased than before.

A study on friction and stress analysis of wedge mount leveler in Semi-Conductor Sub-Fab (반도체 Sub-Fab 용 웨지 마운트 레벨러(Wdge Mount Leveler)의 마찰과 응력에 관한 연구)

  • Min, Kyung-Ho;Song, Ki-Hyeok;Hong, Kwang-Pyo
    • Design & Manufacturing
    • /
    • v.11 no.2
    • /
    • pp.25-28
    • /
    • 2017
  • Semiconductor equipment manufacturers desire to enhance efficiency of Sub Fab to increase semiconductor productivity. For this reason, Sub Fab equipment manufacturers are developing Integrated System that combined modules with multiple facilities. Integrated System is required to apply Mount Leveler of Wedge Type in compliance with weight increase compared with existing single equipment and product shape change. This thesis analyzes main design variables of components of Wedge Mount Leveler and carries out structure analysis using ANSYS, finite element analysis program Analysis shows that main design variables of components of Wedge Mount Leveler has self-locking condition by friction force of Wedge and adjusting bolt. Each friction force hinges upon Wedge angle and Friction Coefficient of contact surface and upon the thread angle and Friction Coefficient of contact surface. Also, as a result of carrying out structure analysis of Wedge Mount Leveler, deflection and stress appears in different depending on the height of the level.

Design of Pipe Expanding Die by Upper Bound Analysis and Finite Element Method (상계법과 유한요소법을 이용한 확관금형 설계)

  • Cho, Yong-Il;Kim, Seung-Hwan;Qiu, Yuan-gen;Cho, Hae-Yong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.5
    • /
    • pp.98-104
    • /
    • 2020
  • Pipe expansion involves various methods to enlarge the diameter of the pipes with the use of a mandrel or punch placed inside the pipe. In this study, the upper bound method was used to analyze the pipe expanding process as well as design a die. A kinematically admissible velocity field was derived for the upper bound analysis with the occurrence of pipe thinning during the expansion factored in. The analysis confirms that a semi-cone angle of the punch between 15ween pip is most advantageous for pipe expansion. The results of the upper bound analysis, which were also consistent with those of the FEM, can be useful for the design of a pipe expansion die.

The Incipient Deformation Analysis for Plane Strain Open-Die Forging Processes with V-shaped Dies Using the Force Balance Method (힘평형법을 이용한 V-형다이 평면변형 자유형 단조공정의 초기변형 해석)

  • Lee, J.H.;Kim, B.M.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.10 no.4
    • /
    • pp.109-117
    • /
    • 1993
  • Force balance method is employed to predict forging information such as forging load, tool pressure and normal stress at the surface of tangential velocity discontinuity. The incipient stages of deformation for the plane strain forging of rectangular billets in V-shaped dies of different semi-angles are analysed. To construct an approximate model for the analysis of deformation by the force balance method in the incipient deformation stages, slip-line field is used. When the deformation mode by slip-line method is the same as that by force balance method, the slip-line method and the force balance method give identical solutions. The effects of die angle, coefficient of friction, billet geometries and deforma- tion characteristics are also investigated. In order to verify the validity of force balance analysis, the rigid-plastic finite element simulation for the various forgig parameters are performed and performed and find to be in good agreement.

  • PDF

FE-Simulation on drawing process of $Al-1\%Si$ bonding wire considering influence of fine Si particle (미세 Si 입자의 영향을 고려한 $Al-1\%Si$ 본딩 와이어의 신선공정해석)

  • Hwang W. H.;Moon H. J.;Ko D. C.;Kim B. M.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2005.05a
    • /
    • pp.393-396
    • /
    • 2005
  • This paper is concerned with the drawing process of $Al-1\%Si$ bonding wire. In this study, the finite-element model established in previous work was used to analyze the effect of various forming parameters, which included the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle in drawing processes. The finite-element results gave the consolidation condition. From the results of analysis, the effects of each forming parameter were determined. It is possible to obtain the Important basic data which can be guaranteed in the fracture prevention of $Al-1\%Si$ wire by using FE-Simulation.

  • PDF

FE-simulation of Drawing Process for Al-1%Si Bonding Wire Considering Fine Si Particle (미세 Si 입자를 고려한 Al-1%Si 본딩 와이어의 신선공정해석)

  • Ko, D.C.;Hwang, W.H.;Lee, S.K.;Kim, B.M.
    • Transactions of Materials Processing
    • /
    • v.15 no.6 s.87
    • /
    • pp.421-427
    • /
    • 2006
  • Drawing process of Al-1%Si bonding wire considering fine Si particle is analyzed in this study using FE-simulation. Al-1%Si boding wire requires electric conductivity because Al-1%Si bonding wire is used for interconnection in semiconductor device. About 1% of Si is added to Al wire for dispersion-strengthening. Distribution and shape of fine Si particle have strongly influence on the wire drawing process. In this study, therefore, the finite-element model based on the observation of wire by continuous casting is used to analyze the effect of various parameters, such as the reduction in area, the semi-die angle, the aspect ratio, the inter-particle spacing and orientation angle of the fine Si particle on wire drawing processes. The effect of each parameter on the wire drawing process is investigated from the aspect of ductility and defects of wire. From the results of the analysis, it is possible to obtain the important basic data which can be guaranteed in the fracture prevention of Al-1 %Si wire.