• 제목/요약/키워드: semi-arc automorphism group

검색결과 1건 처리시간 0.014초

GROUP ACTION FOR ENUMERATING MAPS ON SURFACES

  • Mao, Linfan;Liu, Yanpei
    • Journal of applied mathematics & informatics
    • /
    • 제13권1_2호
    • /
    • pp.201-215
    • /
    • 2003
  • A map is a connected topological graph $\Gamma$ cellularly embedded in a surface. For any connected graph $\Gamma$, by introducing the concertion of semi-arc automorphism group Aut$\_$$\frac{1}{2}$/$\Gamma$ and classifying all embedding of $\Gamma$ undo. the action of this group, the numbers r$\^$O/ ($\Gamma$) and r$\^$N/($\Gamma$) of rooted maps on orientable and non-orientable surfaces with underlying graph $\Gamma$ are found. Many closed formulas without sum ∑ for the number of rooted maps on surfaces (orientable or non-orientable) with given underlying graphs, such as, complete graph K$\_$n/, complete bipartite graph K$\_$m, n/ bouquets B$\_$n/, dipole Dp$\_$n/ and generalized dipole (equation omitted) are refound in this paper.