• 제목/요약/키워드: semantic similarity in Korean

검색결과 145건 처리시간 0.023초

Korean Semantic Similarity Measures for the Vector Space Models

  • Lee, Young-In;Lee, Hyun-jung;Koo, Myoung-Wan;Cho, Sook Whan
    • 말소리와 음성과학
    • /
    • 제7권4호
    • /
    • pp.49-55
    • /
    • 2015
  • It is argued in this paper that, in determining semantic similarity, Korean words should be recategorized with a focus on the semantic relation to ontology in light of cross-linguistic morphological variations. It is proposed, in particular, that Korean semantic similarity should be measured on three tracks, human judgements track, relatedness track, and cross-part-of-speech relations track. As demonstrated in Yang et al. (2015), GloVe, the unsupervised learning machine on semantic similarity, is applicable to Korean with its performance being compared with human judgement results. Based on this compatability, it was further thought that the model's performance might most likely vary with different kinds of specific relations in different languages. An attempt was made to analyze them in terms of two major Korean-specific categories involved in their lexical and cross-POS-relations. It is concluded that languages must be analyzed by varying methods so that semantic components across languages may allow varying semantic distance in the vector space models.

잠재의미분석을 활용한 성격검사문항의 의미표상과 요인구조의 비교 (A Comparison between Factor Structure and Semantic Representation of Personality Test Items Using Latent Semantic Analysis)

  • 박성준;박희영;김청택
    • 인지과학
    • /
    • 제30권3호
    • /
    • pp.133-156
    • /
    • 2019
  • 본 연구는 수검자가 검사 문항을 어떻게 이해했는지를 조사하기 위해 검사문항의 의미표상을 탐구하였다. 잠재의미분석을 활용하여 성격검사문항과 성격요인의 의미표상 간 유사도를 나타내는 의미유사도 행렬을 제안하였고, 이를 기존의 탐색적 요인분석 결과와 비교하였다. 이를 위해 예비 연구에서 대학생 154명을 대상으로 제한된 맥락에서 성격의 5요인을 각각 묘사하는 지문을 수집하였고, 이를 바탕으로 5차원의 축소하여 의미공간을 구성하였다. 연구 1에서는 간편형 한국어 BFI의 요인부하량 행렬과, 예비 연구에서 구성한 의미공간에서 생성한 의미유사도 행렬을 비교하여, 두 행렬이 높은 정적 상관이 있음을 보여주었다. 연구 2에서는 의미유사도를 기반으로 성격검사문항을 생성하고, 수검자의 반응을 수집하여 탐색적 요인분석을 통해 요인구조를 도출하여 두 행렬이 유사함을 보였다. 결론적으로 본 연구는 성격검사에 대한 수검자의 반응 없이 검사문항의 의미표상을 분석하여 구성타당도를 추론할 수 있는 방법을 제안하였고, 성격검사의 요인구조를 검사문항과 성격요인의 의미표상 간 유사도로 해석할 수 있음을 보여주었다. 이러한 결과는 성격검사 개발에 실용적인 도움을 줄 수 있을 것이다.

A Method of Service Refinement for Network-Centric Operational Environment

  • Lee, Haejin;Kang, Dongsu
    • 한국컴퓨터정보학회논문지
    • /
    • 제21권12호
    • /
    • pp.97-105
    • /
    • 2016
  • Network-Centric Operational Environment(NCOE) service becomes critical in today's military environment network because reusability of service and interaction are being increasingly important as well in business process. However, the refinement of service by semantic similarity and functional similarity at the business process was not detailed yet. In order to enhance accuracy of refining of business service, in this study, the authors introduce a method for refining service by semantic similarity and functional similarity in BPMN model. The business process are designed in a BPMN model. In this model, candidated services are refined through binding related activities by the analysis result of semantic similarity based on word-net and functional similarity based on properties specification between activities. Then, the services are identified through refining the candidated service. The proposed method is expected to enhance the service identification with accuracy and modularity. It also can accelerate more standardized service refinement developments by the proposed method.

KNN-based Image Annotation by Collectively Mining Visual and Semantic Similarities

  • Ji, Qian;Zhang, Liyan;Li, Zechao
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제11권9호
    • /
    • pp.4476-4490
    • /
    • 2017
  • The aim of image annotation is to determine labels that can accurately describe the semantic information of images. Many approaches have been proposed to automate the image annotation task while achieving good performance. However, in most cases, the semantic similarities of images are ignored. Towards this end, we propose a novel Visual-Semantic Nearest Neighbor (VS-KNN) method by collectively exploring visual and semantic similarities for image annotation. First, for each label, visual nearest neighbors of a given test image are constructed from training images associated with this label. Second, each neighboring subset is determined by mining the semantic similarity and the visual similarity. Finally, the relevance between the images and labels is determined based on maximum a posteriori estimation. Extensive experiments were conducted using three widely used image datasets. The experimental results show the effectiveness of the proposed method in comparison with state-of-the-arts methods.

Semantic Conceptual Relational Similarity Based Web Document Clustering for Efficient Information Retrieval Using Semantic Ontology

  • Selvalakshmi, B;Subramaniam, M;Sathiyasekar, K
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권9호
    • /
    • pp.3102-3119
    • /
    • 2021
  • In the modern rapid growing web era, the scope of web publication is about accessing the web resources. Due to the increased size of web, the search engines face many challenges, in indexing the web pages as well as producing result to the user query. Methodologies discussed in literatures towards clustering web documents suffer in producing higher clustering accuracy. Problem is mitigated using, the proposed scheme, Semantic Conceptual Relational Similarity (SCRS) based clustering algorithm which, considers the relationship of any document in two ways, to measure the similarity. One is with the number of semantic relations of any document class covered by the input document and the second is the number of conceptual relation the input document covers towards any document class. With a given data set Ds, the method estimates the SCRS measure for each document Di towards available class of documents. As a result, a class with maximum SCRS is identified and the document is indexed on the selected class. The SCRS measure is measured according to the semantic relevancy of input document towards each document of any class. Similarly, the input query has been measured for Query Relational Semantic Score (QRSS) towards each class of documents. Based on the value of QRSS measure, the document class is identified, retrieved and ranked based on the QRSS measure to produce final population. In both the way, the semantic measures are estimated based on the concepts available in semantic ontology. The proposed method had risen efficient result in indexing as well as search efficiency also has been improved.

주관식 문제 채점에서의 구문의미트리 비교 시스템에 대한 연구 (Research on Comparing System with Syntactic-Semantic Tree in Subjective-type Grading)

  • 강원석
    • 컴퓨터교육학회논문지
    • /
    • 제20권5호
    • /
    • pp.79-88
    • /
    • 2017
  • 질높은 주관식 문제 채점을 위해서는 답변 속에 들어있는 단어간의 구문의미적 관계를 분석하는 구문 의미 분석이 필요하다. 그러나 구문의미 분석의 결과인 구문의미트리는 단어간의 구조적 의미 관계를 내포하고 있어 단어의 나열인 일차원적인 벡터의 유사도 계산을 적용할 수가 없다. 본 연구는 단어의 지식과 함께 단어와 단어간의 구조적 의미 관계를 내포하는 구문의미트리를 비교하는 비교 시스템에 대한 연구를 한다. 본 연구에서는 구문의미트리 비교를 위해 유사성 계산 원칙을 제안하고 실험을 통해 검증하였다. 본 구문의미트리 비교 시스템은 구문의미분석의 결과를 비교할 수 있게 하여 주관식 문제 채점에 도움을 줄 것이고 문서 유사도 영역에도 활용할 수 있을 것이다.

의미 유사도를 활용한 Distant Supervision 기반의 트리플 생성 성능 향상 (Improving The Performance of Triple Generation Based on Distant Supervision By Using Semantic Similarity)

  • 윤희근;최수정;박성배
    • 정보과학회 논문지
    • /
    • 제43권6호
    • /
    • pp.653-661
    • /
    • 2016
  • 기존의 패턴기반 트리플 생성 시스템은 distant supervision의 가정으로 인해 오류 패턴을 생성하여 트리플 생성 시스템의 성능을 저하시키는 문제점이 있다. 이 문제점을 해결하기 위해 본 논문에서는 패턴과 프로퍼티 사이의 의미 유사도 기반의 패턴 신뢰도를 측정하여 오류 패턴을 제거하는 방법을 제안한다. 의미 유사도 측정은 비지도 학습 방법인 워드임베딩과 워드넷 기반의 어휘 의미 유사도 측정 방법을 결합하여 사용한다. 또한 한국어 패턴과 영어 프로퍼티 사이의 언어 및 어휘 불일치 문제를 해결하기 위해 정준 상관 분석과 사전 기반의 번역을 사용한다. 실험 결과에 따르면 제안한 의미 유사도 기반의 패턴 신뢰도 측정 방법이 기존의 방법보다 10% 높은 정확률의 트리플 집합을 생성하여, 트리플 생성 성능 향상을 증명하였다.

Semantic Trajectory Based Behavior Generation for Groups Identification

  • Cao, Yang;Cai, Zhi;Xue, Fei;Li, Tong;Ding, Zhiming
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제12권12호
    • /
    • pp.5782-5799
    • /
    • 2018
  • With the development of GPS and the popularity of mobile devices with positioning capability, collecting massive amounts of trajectory data is feasible and easy. The daily trajectories of moving objects convey a concise overview of their behaviors. Different social roles have different trajectory patterns. Therefore, we can identify users or groups based on similar trajectory patterns by mining implicit life patterns. However, most existing daily trajectories mining studies mainly focus on the spatial and temporal analysis of raw trajectory data but missing the essential semantic information or behaviors. In this paper, we propose a novel trajectory semantics calculation method to identify groups that have similar behaviors. In our model, we first propose a fast and efficient approach for stay regions extraction from daily trajectories, then generate semantic trajectories by enriching the stay regions with semantic labels. To measure the similarity between semantic trajectories, we design a semantic similarity measure model based on spatial and temporal similarity factor. Furthermore, a pruning strategy is proposed to lighten tedious calculations and comparisons. We have conducted extensive experiments on real trajectory dataset of Geolife project, and the experimental results show our proposed method is both effective and efficient.

GORank: Gene Ontology를 이용한 유전자 산물의 의미적 유사성 검색 (GORank: Semantic Similarity Search for Gene Products using Gene Ontology)

  • 김기성;유상원;김형주
    • 한국정보과학회논문지:데이타베이스
    • /
    • 제33권7호
    • /
    • pp.682-692
    • /
    • 2006
  • 유사한 생물학적 특성을 가진 유전자 산물을 검색하는 것은 생물정보학 연구에 필수적인 기술이다. 현재 대부분의 생물학 데이타베이스에서 Gene Ontology의 용어를 사용하여 유전자 산물의 생물학적 특성을 기술하고 있다. 본 논문에서는 이런 유전자 산물의 주석 정보를 사용해 의미적으로 유사한 유전자 산물을 검색하는 방법을 제안한다. 이를 위해 우선 정보 이론에 기반한 유전자 산물간의 의미적 유사도를 정의하였다. 그리고 이 유사도를 이용한 의미적 유사성 검색 알고리즘을 제안하였다. 의미적 유사성 검색을 처리하기 위해 Fagin의 문턱값 알고리즘(threshold algorithm)을 다음과 같이 변형한 기법을 사용하였다. 우선 사용하는 유사도 함수가 단조 증가 성질을 갖지 않기 때문에 유사도 함수에 맞는 문턱값을 재정의 하였다. 또 역색인 리스트의 구조를 사용하여 중간 검색을 생략할 수 있는 클러스터 스키핑 기법과 역색인 리스트 액세스 순서를 제안하였다. 실제 GO와 주석 정보를 이용하여 성능 평가를 했으며 제안한 알고리즘은 효율적인 알고리즘임을 보였다.

An Artificial Intelligence Approach for Word Semantic Similarity Measure of Hindi Language

  • Younas, Farah;Nadir, Jumana;Usman, Muhammad;Khan, Muhammad Attique;Khan, Sajid Ali;Kadry, Seifedine;Nam, Yunyoung
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • 제15권6호
    • /
    • pp.2049-2068
    • /
    • 2021
  • AI combined with NLP techniques has promoted the use of Virtual Assistants and have made people rely on them for many diverse uses. Conversational Agents are the most promising technique that assists computer users through their operation. An important challenge in developing Conversational Agents globally is transferring the groundbreaking expertise obtained in English to other languages. AI is making it possible to transfer this learning. There is a dire need to develop systems that understand secular languages. One such difficult language is Hindi, which is the fourth most spoken language in the world. Semantic similarity is an important part of Natural Language Processing, which involves applications such as ontology learning and information extraction, for developing conversational agents. Most of the research is concentrated on English and other European languages. This paper presents a Corpus-based word semantic similarity measure for Hindi. An experiment involving the translation of the English benchmark dataset to Hindi is performed, investigating the incorporation of the corpus, with human and machine similarity ratings. A significant correlation to the human intuition and the algorithm ratings has been calculated for analyzing the accuracy of the proposed similarity measures. The method can be adapted in various applications of word semantic similarity or module for any other language.