• 제목/요약/키워드: semantic constraints

검색결과 83건 처리시간 0.023초

효과적인 지식확장을 위한 LOD 클라우드에서의 변화수용적 심층검색 (Change Acceptable In-Depth Searching in LOD Cloud for Efficient Knowledge Expansion)

  • 김광민;손용락
    • 지능정보연구
    • /
    • 제24권2호
    • /
    • pp.171-193
    • /
    • 2018
  • 본 연구는 시멘틱 웹의 실질적 구현체인 LOD 클라우드에서 연결정책을 활용함으로써 LOD들간 연결을 효과적으로 제공하고 LOD의 변경된 내용을 검색결과에 빠짐없이 반영할 수 있는 방안을 제시한다. 현재 LOD 클라우드에서는 개체간 연결은 를 이용하여 개체들이 동일함을 명시적으로 기술하는 방식으로 이루어져 있다. 하지만, 이러한 명시적 연결방식은 LOD 클라우드 규모의 방대함에도 불구하고 개체간 동일성을 개체단위에서 파악하여야 하는 어려움이 있으며 주기적으로 LOD에 추가하여야 함에 따라 검색 시 개체들이 누락되는 한계가 있다. 이를 극복하기 위하여 본 연구에서는 명시적 연결을 생성하는 대신 LOD별로 연결하고자 하는 LOD와의 연결정책을 수립하여 LOD와 함께 공개하는 방식을 제안한다. 연결정책을 활용함으로써 연결하여야 할 동일개체를 검색시점에서 파악할 수 있으므로 추가되었던 개체들을 누락됨 없이 검색결과에 포함시킬 수 있고 LOD 클라우드에서의 연결성도 효과적으로 확충할 수 있다. 확충된 연결성은 정보의 지능적 처리의 선행과정인 지식확장의 근간이 된다. 연결정책은 연결하고자 하는 소스와 타겟 LOD의 주어 개체들간의 동일성을 평가하는데 도움이 되는 술어 쌍을 명세하는 방식으로 수립하며 검색 시 이러한 술어쌍에 대응하는 RDF 트리플을 검색하고 이들의 목적어들이 충분히 동일한 것인가를 평가하여 주어개체들의 동일수준을 판단한다. 본 연구에서는 이러한 연결정책을 이용하여 여러 LOD들을 심층적으로 검색하는 시스템을 구현하였다. 검색과정에서는 기존 명시적 연결들도 함께 활용하도록 구현하였다. 검색시스템에 대한 실험은 DBpedia의 주요 LOD들을 대상으로 진행하였다. 실험결과 연결대상 개체들의 목적어들이 0.8 ~ 0.9의 유사수준을 가지는 경우 적정한 확장성을 가지고 충분히 신뢰적인 개체들을 적절하게 포함하는 것으로 확인하였다. 또한, 개체들은 8개 이상의 동일연결을 제공하여야 검색결과가 신뢰적으로 활용될 수 있을 것으로 파악되었다.

Prosodic Phrasing and Focus in Korea

  • Baek, Judy Yoo-Kyung
    • 대한음성학회:학술대회논문집
    • /
    • 대한음성학회 1996년도 10월 학술대회지
    • /
    • pp.246-246
    • /
    • 1996
  • Purpose: Some of the properties of the prosodic phrasing and some acoustic and phonological effects of contrastive focus on the tonal pattern of Seoul Korean is explored based on a brief experiment of analyzing the fundamental frequency(=FO) contour of the speech of the author. Data Base and Analysis Procedures: The examples were chosen to contain mostly nasal and liquid consonants, since it is difficult to track down the formants in stops and fricatives during their corresponding consonantal intervals and stops may yield an effect of unwanted increase in the FO value due to their burst into the following vowel. All examples were recorded three times and the spectrum of the most stable repetition was generated, from which the FO contour of each sentence was obtained, the peaks with a value higher than 250Hz being interpreted as a high tone (=H). The result is then discussed within the prosodic hierarchy framework of Selkirk (1986) and compared with the tonal pattern of the Northern Kyungsang dialect of Korean reported in Kenstowicz & Sohn (1996). Prosodic Phrasing: In N.K. Korean, H never appears both on the object and on the verb in a neutral sentence, which indicates the object and the verb form a single Phonological Phrase ($={\phi}$), given that there is only one pitch peak for each $={\phi}$. However, Seoul Korean shows that both the object and the verb have H of their own, indicating that they are not contained in one $={\phi}$. This violates the Optimality constraint of Wrap-XP (=Enclose a lexical head and its arguments in one $={\phi}$), while N.K. Korean obeys the constraint by grouping a VP in a single $={\phi}$. This asymmetry can be resolved through a constraint that favors the separate grouping of each lexical category and is ranked higher than Wrap-XP in Seoul Korean but vice versa in N.K. Korean; $Align-x^{lex}$ (=Align the left edge of a lexical category with that of a $={\phi}$). (1) nuna-ka manll-ll mEk-nIn-ta ('sister-NOM garlic-ACC eat-PRES-DECL') a. (LLH) (LLH) (HLL) ----Seoul Korean b. (LLH) (LLL LHL) ----N.K. Korean Focus and Phrasing: Two major effects of contrastive focus on phonological phrasing are found in Seoul Korean: (a) the peak of an Intonatioanl Phrase (=IP) falls on the focused element; and (b) focus has the effect of deleting all the following prosodic structures. A focused element always attracts the peak of IP, showing an increase of approximately 30Hz compared with the peak of a non-focused IP. When a subject is focused, no H appears either on the object or on the verb and a focused object is never followed by a verb with H. The post-focus deletion of prosodic boundaries is forced through the interaction of StressFocus (=If F is a focus and DF is its semantic domain, the highest prominence in DF will be within F) and Rightmost-IP (=The peak of an IP projects from the rightmost $={\phi}$). First Stress-F requires the peak of IP to fall on the focused element. Then to avoid violating Rightmost-IP, all the boundaries after the focused element should delete, minimizing the number of $={\phi}$'s intervening from the right edge of IP. (2) (omitted) Conclusion: In general, there seems to be no direct alignment constraints between the syntactically focused element and the edge of $={\phi}$ determined in phonology; all the alignment effects come from a single requirement that the peak of IP projects from the rightmost $={\phi}$ as proposed in Truckenbrodt (1995).

  • PDF

뉴럴 텐서 네트워크 기반 주식 개별종목 지식개체명 추출 방법에 관한 연구 (A Study on Knowledge Entity Extraction Method for Individual Stocks Based on Neural Tensor Network)

  • 양윤석;이현준;오경주
    • 지능정보연구
    • /
    • 제25권2호
    • /
    • pp.25-38
    • /
    • 2019
  • 정보화 시대의 넘쳐나는 콘텐츠들 속에서 사용자의 관심과 요구에 맞는 양질의 정보를 선별해내는 과정은 세대를 거듭할수록 더욱 중요해지고 있다. 정보의 홍수 속에서 사용자의 정보 요구를 단순한 문자열로 인식하지 않고, 의미적으로 파악하여 검색결과에 사용자 의도를 더 정확하게 반영하고자 하는 노력이 이루어지고 있다. 구글이나 마이크로소프트와 같은 대형 IT 기업들도 시멘틱 기술을 기반으로 사용자에게 만족도와 편의성을 제공하는 검색엔진 및 지식기반기술의 개발에 집중하고 있다. 특히 금융 분야는 끊임없이 방대한 새로운 정보가 발생하며 초기의 정보일수록 큰 가치를 지녀 텍스트 데이터 분석과 관련된 연구의 효용성과 발전 가능성이 기대되는 분야 중 하나이다. 따라서, 본 연구는 주식 관련 정보검색의 시멘틱 성능을 향상시키기 위해 주식 개별종목을 대상으로 뉴럴 텐서 네트워크를 활용한 지식 개체명 추출과 이에 대한 성능평가를 시도하고자 한다. 뉴럴 텐서 네트워크 관련 기존 주요 연구들이 추론을 통해 지식 개체명들 사이의 관계 탐색을 주로 목표로 하였다면, 본 연구는 주식 개별종목과 관련이 있는 지식 개체명 자체의 추출을 주목적으로 한다. 기존 관련 연구의 문제점들을 해결하고 모형의 실효성과 현실성을 높이기 위한 다양한 데이터 처리 방법이 모형설계 과정에서 적용되며, 객관적인 성능 평가를 위한 실증 분석 결과와 분석 내용을 제시한다. 2017년 5월 30일부터 2018년 5월 21일 사이에 발생한 전문가 리포트를 대상으로 실증 분석을 진행한 결과, 제시된 모형을 통해 추출된 개체명들은 개별종목이 이름을 약 69% 정확도로 예측하였다. 이러한 결과는 본 연구에서 제시하는 모형의 활용 가능성을 보여주고 있으며, 후속 연구와 모형 개선을 통한 성과의 제고가 가능하다는 것을 의미한다. 마지막으로 종목명 예측 테스트를 통해 본 연구에서 제시한 학습 방법이 새로운 텍스트 정보를 의미적으로 접근하여 관련주식 종목과 매칭시키는 목적으로 사용될 수 있는 가능성을 확인하였다.