• Title/Summary/Keyword: self-powered sensing

Search Result 13, Processing Time 0.018 seconds

Bio-inspired self powered nervous system for civil structures

  • Shoureshi, Rahmat A.;Lim, Sun W.
    • Smart Structures and Systems
    • /
    • v.5 no.2
    • /
    • pp.139-152
    • /
    • 2009
  • Globally, civil infrastructures are deteriorating at an alarming rate caused by overuse, overloading, aging, damage or failure due to natural or man-made hazards. With such a vast network of deteriorating infrastructure, there is a growing interest in continuous monitoring technologies. In order to provide a true distributed sensor and control system for civil structures, we are developing a Structural Nervous System that mimics key attributes of a human nervous system. This nervous system is made up of building blocks that are designed based on mechanoreceptors as a fundamentally new approach for the development of a structural health monitoring and diagnostic system that utilizes the recently developed piezo-fibers capable of sensing and actuation. In particular, our research has been focused on producing a sensory nervous system for civil structures by using piezo-fibers as sensory receptors, nerve fibers, neuronal pools, and spinocervical tract to the nodal and central processing units. This paper presents up to date results of our research, including the design and analysis of the structural nervous system.

Development of Energy Harvesting Technologies Platform for Self-Power Rechargeable Pacemaker Medical Device. (자가발전 심장박동기를 위한 에너지 수확 플랫폼 개발)

  • Park, Hyun-Moon;Lee, Jung-Chul;Kim, Byunng-Soo
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.619-626
    • /
    • 2019
  • The advances of semiconductor and circuitry technology dovetailed with nano processing techniques have further enhanced micro-miniaturization, sensitivity, longevity and reliability in MID(Medical Implant Device). Nevertheless, one of the remaining challenges is whether power can sufficiently and continuously be supplied for the operation of the MID. Self-powered MID that harvest biomechanical energy from human motion, respiratory and muscle movement are part of a paradigm shift. In this paper, we developed a rechargeable pacemaker through self-power generation with the triboelectric nanogenerator. We demonstrate a fully implanted pacemaker based on an implantable triboelectric nanogenerator, which act as a storage as well as active movement on a large-animal(dog) scale. The self-power pacemaker harvested from animal motion is 2.47V, which is higher than the required pacemaker device sensing voltage(1.35V).

A Study on an Efficient Routing Scheme for using a priority scheme in Wireless Sensor Networks (무선 센서 네트워크 환경에서 우선순위 기법을 이용한 효율적인 경로 설정에 대한 연구)

  • Won, Dae-Ho;Yang, Yeon-Mo
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.4
    • /
    • pp.40-46
    • /
    • 2011
  • Wireless Sensor Networks(WSNs) have shown a lot of good outcomes in providing a various functions depending on industrial expectations by deploying ad-hoc networking with helps of light loaded and battery powered sensor nodes. In particular, it is strongly requested to develop an algorithm of cross-layer control between 2-layer and 3-layer to deriver the sensing data from the end node to the sink node on time. In this paper, based on the above observation we have proposed an IEEE802.15.4 based self priority routing scheme under UC Berkely TinyOS platform. The proposed beacon based priority routing (BPR) algorithm scheme utilizes beacon periods in sending message with embedding the high priority data and thus provides high quality of service(QoS) in the given criteria. The performance measures are the packet Throughput, delivery, latency, total energy consumption. Simulation results under TinyOS Simulator(TOSSIM) have shown the proposed scheme outcome the conventional Ad hoc On-Demand Distance Vector(AODV) Routing.