• Title/Summary/Keyword: self-powered damper

Search Result 2, Processing Time 0.017 seconds

Self-powered hybrid electromagnetic damper for cable vibration mitigation

  • Jamshidi, Maziar;Chang, C.C.;Bakhshi, Ali
    • Smart Structures and Systems
    • /
    • v.20 no.3
    • /
    • pp.285-301
    • /
    • 2017
  • This paper presents the design and the application of a new self-powered hybrid electromagnetic damper that can harvest energy while mitigating the vibration of a structure. The damper is able to switch between an energy harvesting passive mode and a semi-active mode depending on the amount of energy harvested and stored in the battery. The energy harvested in the passive mode resulting from the suppression of vibration is employed to power up the monitoring and electronic components necessary for the semi-active control. This provides a hybrid control capability that is autonomous in terms of its power requirement. The proposed hybrid circuit design provides two possible options for the semi-active control: without energy harvesting and with energy harvesting. The device mechanism and the circuitry that can drive this self-powered electromagnetic damper are described in this paper. The parameters that determine the device feasible force-velocity region are identified and discussed. The effectiveness of this hybrid damper is evaluated through a numerical simulation study on vibration mitigation of a bridge stay cable under wind excitation. It is demonstrated that the proposed hybrid design outperforms the passive case without external power supply. It is also shown that a broader force range, facilitated by decoupled passive and semi-active modes, can improve the vibration performance of the cable.

Self-reliant wireless health monitoring based on tuned-mass-damper mechanism

  • Makihara, Kanjuro;Hirai, Hidekazu;Yamamoto, Yuta;Fukunaga, Hisao
    • Smart Structures and Systems
    • /
    • v.15 no.6
    • /
    • pp.1625-1642
    • /
    • 2015
  • We propose an electrically self-reliant structural health monitoring (SHM) system that is able to wirelessly transmit sensing data using electrical power generated by vibration without the need for additional external power sources. The provision of reliable electricity to wireless SHM systems is a highly important issue that has often been ignored, and to expand the applicability of various wireless SHM innovations, it will be necessary to develop comprehensive wireless SHM devices including stable electricity sources. In light of this need, we propose a new, highly efficient vibration-powered generator based on a tuned-mass-damper (TMD) mechanism that is quite suitable for vibration-based SHM. The charging time of the TMD generator is shorter than that of conventional generators based on the impedance matching method, and the proposed TMD generator can harvest 16 times the amount of energy that a conventional generator can. The charging time of an SHM wireless transmitter is quantitatively formulated. We conduct wireless monitoring experiments to validate a wireless SHM system composed of a self-reliant SHM and a vibration-powered TMD generator.