• Title/Summary/Keyword: self-organizing networks

Search Result 177, Processing Time 0.023 seconds

A Study on Fault Diagnosis in Face-Milling using Artificial Neural Network (인공신경망을 이용한 정면밀링에서 이상진단에 관한 연구)

  • Kim, Won-Il;Lee, Yun-Kyung;Wang, Dyuk-Hyun;Kang, Jae-Kwan;Kim, Byung-Chang;Lee, Kwan-Cheol;Jung, In-Ryung
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.4 no.3
    • /
    • pp.57-62
    • /
    • 2005
  • Neural networks, which have learning and self-organizing abilities, can be advantageously used in the pattern recognition. Neural network techniques have been widely used in monitoring and diagnosis, and compare favourable with traditional statistical pattern recognition algorithms, heuristic rule-based approaches, and fuzzy logic approaches. In this study the fault diagnosis of the face-milling using the artificial neural network was investigated. After training, the sample which measure load current was monitored by constant output results.

  • PDF

A Dynamically Reconfiguring Backpropagation Neural Network and Its Application to the Inverse Kinematic Solution of Robot Manipulators (동적 변화구조의 역전달 신경회로와 로보트의 역 기구학 해구현에의 응용)

  • 오세영;송재명
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.39 no.9
    • /
    • pp.985-996
    • /
    • 1990
  • An inverse kinematic solution of a robot manipulator using multilayer perceptrons is proposed. Neural networks allow the solution of some complex nonlinear equations such as the inverse kinematics of a robot manipulator without the need for its model. However, the back-propagation (BP) learning rule for multilayer perceptrons has the major limitation of being too slow in learning to be practical. In this paper, a new algorithm named Dynamically Reconfiguring BP is proposed to improve its learning speed. It uses a modified version of Kohonen's Self-Organizing Feature Map (SOFM) to partition the input space and for each input point, select a subset of the hidden processing elements or neurons. A subset of the original network results from these selected neuron which learns the desired mapping for this small input region. It is this selective property that accelerates convergence as well as enhances resolution. This network was used to learn the parity function and further, to solve the inverse kinematic problem of a robot manipulator. The results demonstrate faster learning than the BP network.

A Study on the Forcasting and Fuzzy Control of Maximum demand Power Using SOFM Neural Networks (SOFM신경망을 이용한 최대수요전력 예측과 퍼지제어에 관한 연구)

  • 조성원;안준식;석진욱
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 1998.10a
    • /
    • pp.427-432
    • /
    • 1998
  • 최근 산업발전에 따라 야기되는 문제점 중 전력수요의 증가에 의한 피해가 증대되고 있다. 여름철 하계부하등에 의한 과부하는 가정이나 대형건물의 정전을 발생시키거나 공장의 기계를 파손시키기도 하기 때문에 이를 미연에 방지할 수 있는 부하예측기법이 점차로 강조되고 있는 현실이다. 이에 본 논문에서는 초(sec)단위의 순시부하예측/제어를 위한 새로운 방법과 퍼지제어기를 제안한다. 제안한 순시부하예측/제어는 크게 과거의 데이터를 가지고 일정시간 후의 값을 예측하는 예측부와 이 결과의 신뢰도를 높여주기 위한 퍼지제어기로나눌 수 있다. 예측부는 SOFM (Self-Organizing Feature Map) 신경망을 이용하며, 예측된 출력값을 퍼지제어기의 입력으로 사용한다.

  • PDF

Home-eNB management and mobility control method based on LTE (LTE 기반내의 Home-eNB 관리 및 이동성 제어 방법)

  • Kim, Young-Jun;Kim, Sang-Ha;Lee, Jung-Ryun
    • 한국정보통신설비학회:학술대회논문집
    • /
    • 2008.08a
    • /
    • pp.229-232
    • /
    • 2008
  • 급격한 이동통신 기술의 발전에 힘입어 음영지역 해소 및 고속 데이터 처리를 위해 댁내 기지국에 대한 개발 및 연구가 진행 중이다. 댁내 기지국은 크게 음영지역 해소를 위한 Open 방식의 기지국과 고속 데이터 처리를 위해 특정 가입자만 사용할 수 있는 Close 방식이 있다. 상기 방식들은 망의 특성에 맞게 이를 제공하는 망 사업자에 의해 선택 된다. 댁내 기지국을 관리하기 위해서는 많은 시간과 인력자원이 소요되므로 자동으로 설정 및 최적화시키는 기능이 요구 시 되고 있으며, 이를 3GPP에서 SON (Self Organizing Optimizing Networks) 이라 일컫고 연구진행 중이다. 본 논문은 댁내 기지국 관리를 위해 셀의 기본 인자인 PCI(Physical Layer Identity) 할당 방안과 댁내 기지국간 간섭을 최소화 시키기 위한 Adaptive Coverage 방안을 제시한다. 또한 계층적 셀 구성(Hierarchical Cell Structure)에 따른 이동성 제공 방안을 제시한다.

  • PDF

Competitive Benchmarking using Self-Organizing Neural Networks (자기조직화 신경망을 이용한 경쟁적 벤치마킹)

  • 민재형;이영찬
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2000.11a
    • /
    • pp.479-488
    • /
    • 2000
  • 다양한 재무정보를 이용하여 기업간 경쟁적 벤치마킹을 수행하는 것은 매우 어려운 작업인 동시에 분석에 상담한 시간이 소요된다. 본 연구에서는 재무정보를 이용한 기업간 경쟁적 벤치마킹을 효과적으로 수행하기 위하여 대표적인 자율신경망 모형인 자기조직화 신경망을 분석에 이용하였다. 자기조직화 신경망은 다차원적인 재무자료를 2차원 출력 공간으로 투영함으로써 결과를 시각화하는데 매우 효과적이며, 시각화된 결과는 재무적인 경쟁우위에 따라 기업을 군집화함으로써 효과적인 경쟁적 벤치마킹을 수행할 수 있도록 한다. 본 연구에서는 1998년. 1999년, 그리고 2000년 상반기까지의 국내 제조업체 재무구조 분석사례에 자기조직화 신경함을 적용하여 재무적 경쟁우위에 따른 기업들의 군집화 모형으로서의 가능성을 제시하였다.

  • PDF

A Two-Stage Document Page Segmentation Method using Morphological Distance Map and RBF Network (거리 사상 함수 및 RBF 네트워크의 2단계 알고리즘을 적용한 서류 레이아웃 분할 방법)

  • Shin, Hyun-Kyung
    • Journal of KIISE:Software and Applications
    • /
    • v.35 no.9
    • /
    • pp.547-553
    • /
    • 2008
  • We propose a two-stage document layout segmentation method. At the first stage, as top-down segmentation, morphological distance map algorithm extracts a collection of rectangular regions from a given input image. This preliminary result from the first stage is employed as input parameters for the process of next stage. At the second stage, a machine-learning algorithm is adopted RBF network, one of neural networks based on statistical model, is selected. In order for constructing the hidden layer of RBF network, a data clustering technique bared on the self-organizing property of Kohonen network is utilized. We present a result showing that the supervised neural network, trained by 300 number of sample data, improves the preliminary results of the first stage.

Bankruptcy Type Prediction Using A Hybrid Artificial Neural Networks Model (하이브리드 인공신경망 모형을 이용한 부도 유형 예측)

  • Jo, Nam-ok;Kim, Hyun-jung;Shin, Kyung-shik
    • Journal of Intelligence and Information Systems
    • /
    • v.21 no.3
    • /
    • pp.79-99
    • /
    • 2015
  • The prediction of bankruptcy has been extensively studied in the accounting and finance field. It can have an important impact on lending decisions and the profitability of financial institutions in terms of risk management. Many researchers have focused on constructing a more robust bankruptcy prediction model. Early studies primarily used statistical techniques such as multiple discriminant analysis (MDA) and logit analysis for bankruptcy prediction. However, many studies have demonstrated that artificial intelligence (AI) approaches, such as artificial neural networks (ANN), decision trees, case-based reasoning (CBR), and support vector machine (SVM), have been outperforming statistical techniques since 1990s for business classification problems because statistical methods have some rigid assumptions in their application. In previous studies on corporate bankruptcy, many researchers have focused on developing a bankruptcy prediction model using financial ratios. However, there are few studies that suggest the specific types of bankruptcy. Previous bankruptcy prediction models have generally been interested in predicting whether or not firms will become bankrupt. Most of the studies on bankruptcy types have focused on reviewing the previous literature or performing a case study. Thus, this study develops a model using data mining techniques for predicting the specific types of bankruptcy as well as the occurrence of bankruptcy in Korean small- and medium-sized construction firms in terms of profitability, stability, and activity index. Thus, firms will be able to prevent it from occurring in advance. We propose a hybrid approach using two artificial neural networks (ANNs) for the prediction of bankruptcy types. The first is a back-propagation neural network (BPN) model using supervised learning for bankruptcy prediction and the second is a self-organizing map (SOM) model using unsupervised learning to classify bankruptcy data into several types. Based on the constructed model, we predict the bankruptcy of companies by applying the BPN model to a validation set that was not utilized in the development of the model. This allows for identifying the specific types of bankruptcy by using bankruptcy data predicted by the BPN model. We calculated the average of selected input variables through statistical test for each cluster to interpret characteristics of the derived clusters in the SOM model. Each cluster represents bankruptcy type classified through data of bankruptcy firms, and input variables indicate financial ratios in interpreting the meaning of each cluster. The experimental result shows that each of five bankruptcy types has different characteristics according to financial ratios. Type 1 (severe bankruptcy) has inferior financial statements except for EBITDA (earnings before interest, taxes, depreciation, and amortization) to sales based on the clustering results. Type 2 (lack of stability) has a low quick ratio, low stockholder's equity to total assets, and high total borrowings to total assets. Type 3 (lack of activity) has a slightly low total asset turnover and fixed asset turnover. Type 4 (lack of profitability) has low retained earnings to total assets and EBITDA to sales which represent the indices of profitability. Type 5 (recoverable bankruptcy) includes firms that have a relatively good financial condition as compared to other bankruptcy types even though they are bankrupt. Based on the findings, researchers and practitioners engaged in the credit evaluation field can obtain more useful information about the types of corporate bankruptcy. In this paper, we utilized the financial ratios of firms to classify bankruptcy types. It is important to select the input variables that correctly predict bankruptcy and meaningfully classify the type of bankruptcy. In a further study, we will include non-financial factors such as size, industry, and age of the firms. Thus, we can obtain realistic clustering results for bankruptcy types by combining qualitative factors and reflecting the domain knowledge of experts.

A Big Data Application for Anomaly Detection in VANETs (VANETs에서 비정상 행위 탐지를 위한 빅 데이터 응용)

  • Kim, Sik;Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.14 no.6
    • /
    • pp.175-181
    • /
    • 2014
  • With rapid growth of the wireless mobile computing network technologies, various mobile ad hoc network applications converged with other related technologies are rapidly disseminated nowadays. Vehicular Ad Hoc Networks are self-organizing mobile ad hoc networks that typically have moving vehicle nodes with high speeds and maintaining its topology very short with unstable communication links. Therefore, VANETs are very vulnerable for the malicious noise of sensors and anomalies of the nodes in the network system. In this paper, we propose an anomaly detection method by using big data techniques that efficiently identify malicious behaviors or noises of sensors and anomalies of vehicle node activities in these VANETs, and the performance of the proposed scheme is evaluated by a simulation study in terms of anomaly detection rate and false alarm rate for the threshold ${\epsilon}$.

Analysis of Two-Dimensional Fluorescence Spectra in Biotechnological Processes by Artificial Neural Networks II - Process Modeling using Backpropagation Neural Network - (인공신경망에 의만 생물공정에서 2차원 영광스펙트럼의 분석 II - 역전파 신경망에 의한 공정의 모델링 -)

  • Lee Kum-Il;Yim Yong-Sik;Sohn Ok-Jae;Chung Sang-Wook;Rhee Jong Il
    • KSBB Journal
    • /
    • v.20 no.4
    • /
    • pp.299-304
    • /
    • 2005
  • A two-dimensional (2D) spectrofluorometer was used to monitor various fermentation processes with recombinant E. coli for the production of 5-aminolevulinic acid (ALA). The whole fluorescence spectral data obtained during a process were analyed using artificial neural networks, i.e. self-organizing map (SOM) and feedforward backpropagation neural network (BPNN).Based on the classified fluorescence spectra a supervised BPNN algorithm was used to predict some of the process parameters. It was also shown that the BPNN models could elucidate some sections of the process performance, e.g. forecasting the process performance.

Development of Travel Time Estimation Algorithm for National Highway by using Self-Organizing Neural Networks (자기조직형 신경망 이론을 이용한 국도 통행시간 추정 알고리즘)

  • Do, Myungsik;Bae, Hyunesook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.3D
    • /
    • pp.307-315
    • /
    • 2008
  • The aim of this study is to develop travel time estimation model by using Self-Organized Neural network(in brief, SON) algorithm. Travel time data based on vehicles equipped with GPS and number-plate matching collected from National road number 3 (between Jangji-IC and Gonjiam-IC), which is pilot section of National Highway Traffic Management System were employed. We found that the accuracies of travel time are related to location of detector, the length of road section and land-use properties. In this paper, we try to develop travel time estimation using SON to remedy defects of existing neural network method, which could not additional learning and efficient structure modification. Furthermore, we knew that the estimation accuracy of travel time is superior to optimum located detectors than based on existing located detectors. We can expect the results of this study will make use of location allocation of detectors in highway.