• Title/Summary/Keyword: self-organizing feature map

Search Result 152, Processing Time 0.025 seconds

LVQ(Learning Vector Quantization)을 퍼지화한 학습 법칙을 사용한 퍼지 신경회로망 모델

  • Kim, Yong-Su
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 2005.05a
    • /
    • pp.186-189
    • /
    • 2005
  • 본 논문에서는 LVQ를 퍼지화한 새로운 퍼지 학습 법칙들을 제안하였다. 퍼지 LVQ 학습법칙 1은 기존의 학습률 대신에 퍼지 학습률을 사용하였는데 이는 조건 확률의 퍼지화에 기반을 두고 있다. 퍼지 LVQ 학습법칙 2는 클래스들 사이에 존재하는 입력벡터가 결정 경계선에 대한 정보를 더 가지고 있는 것을 반영한 것이다. 이 새로운 퍼지 학습 법칙들을 improved IAFC(Integrted Adaptive Fuzzy Clustering)신경회로망에 적용하였다. improved IAFC신경회로망은 ART-1 (Adaptive Resonance Theory)신경회로망과 Kohonen의 Self-Organizing Feature Map의 장점을 취합한 퍼지 신경회로망이다. 제안한 supervised IAFC 신경회로망 1과 supervised IAFC neural 신경회로망 2의 성능을 오류 역전파 신경회로망의 성능과 비교하기 위하여 iris 데이터를 사용하였는데 Supervised IAFC neural network 2가 오류 역전파 신경회로망보다 성능이 우수함을 보여주었다.

  • PDF

Object Recognition and Restoration Using Ultrasound Sensors and Neural Networks (초음파 센서와 신경훼로망을 이용한 물체 인식과 복원)

  • Choo, Seung-Won;Lee, Kee-Seong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.349-352
    • /
    • 1994
  • An object recognition and restoration using ultrasound sensors and neural networks are presented. The planar arrangement of the sensor is used to reduce the interference effects between sensors. The SOFM(Self-Organizing Feature Map) Neural Network and SCL(Simple Competitive Learning) method are learned with the acquired data. Lab experiments were performed that the object can be recognized ed the resolutions of the object can be enhanced by using the small number of the ultrasound array and neural networks.

  • PDF

Content-based Trademark Image Retrieval System using SOM (SOM을 이용한 등록상표에 대한 내용기반 이미지 검색)

  • Lee, Jae-Jun;Shin, Min-Ki;Paik, Woo-Jin;Shin, Moon-Sun
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2007.05a
    • /
    • pp.489-492
    • /
    • 2007
  • 산업재산권중 하나인 상표에 대한 효율적인 이미지 검색은 상표도용 및 이로 인한 분쟁을 방지할 수 있다. 이를 위해서는 효율적인 내용기반 유사이미지 검색이 필요하다. 본 논문에서는 상표이미지검색에 있어 가시적인 특성(visual feature)을 그레이 히스토그램을 통해서 상표이미지의 특성값을 추출하여 이를 입력패턴으로 SOM(Self-Organizing Map)알고리즘을 적용한 내용기반 유사이미지 검색시스템을 제안한다.

Advanced Multistage Feature-based Classification Model (진보된 다단계 특징벡터 기반의 분류기 모델)

  • Kim, Jae-Young;Park, Dong-Chul
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.36-41
    • /
    • 2010
  • An advanced form of Multistage Feature-based Classification Model(AMFCM), called AMFCM, is proposed in this paper. AMFCM like MFCM does not use the concatenated form of available feature vectors extracted from original data to classify each data, but uses only groups related to each feature vector to classify separately. The prpposed AMFCM improves the contribution rate used in MFCM and proposes a confusion table for each local classifier using a specific feature vector group. The confusion table for each local classifier contains accuracy information of each local classifier on each class of data. The proposed AMFCM is applied to the problem of music genre classification on a set of music data. The results demonstrate that the proposed AMFCM outperforms MFCM by 8% - 15% on average in terms of classification accuracy depending on the grouping algorithms used for local classifiers and the number of clusters.

Real-Time Decoding of Multi-Channel Peripheral Nerve Activity (다채널 말초 신경신호의 실시간 디코딩)

  • Jee, In-Hyeog;Lee, Yun-Jung;Chu, Jun-Uk
    • Journal of IKEEE
    • /
    • v.24 no.4
    • /
    • pp.1039-1049
    • /
    • 2020
  • Neural decoding is important to recognize the user's intention for controlling a neuro-prosthetic hand. This paper proposes a real-time decoding method for multi-channel peripheral neural activity. Peripheral nerve signals were measured from the median and radial nerves, and motion artifacts were removed based on locally fitted polynomials. Action potentials were then classified using a k-means algorithm. The firing rate of action potentials was extracted as a feature vector and its dimensionality was reduced by a self-organizing feature map. Finally, a multi-layer perceptron was used to classify hand motions. In monkey experiments, all processes were completed within a real-time constrain, and the hand motions were recognized with a high success rate.

Reinforcement Learning with Clustering for Function Approximation and Rule Extraction (함수근사와 규칙추출을 위한 클러스터링을 이용한 강화학습)

  • 이영아;홍석미;정태충
    • Journal of KIISE:Software and Applications
    • /
    • v.30 no.11
    • /
    • pp.1054-1061
    • /
    • 2003
  • Q-Learning, a representative algorithm of reinforcement learning, experiences repeatedly until estimation values about all state-action pairs of state space converge and achieve optimal policies. When the state space is high dimensional or continuous, complex reinforcement learning tasks involve very large state space and suffer from storing all individual state values in a single table. We introduce Q-Map that is new function approximation method to get classified policies. As an agent learns on-line, Q-Map groups states of similar situations and adapts to new experiences repeatedly. State-action pairs necessary for fine control are treated in the form of rule. As a result of experiment in maze environment and mountain car problem, we can achieve classified knowledge and extract easily rules from Q-Map

Condition Classification for Small Reciprocating Compressors Using Wavelet Transform and Artificial Neural Network (웨이브릿 변환과 인공신경망 기법을 이용한 소형 왕복동 압축기의 상태 분류)

  • Lim, D.S.;Yang, B.S.;An, B.H.;Tan, A.;Kim, D.J.
    • Journal of Power System Engineering
    • /
    • v.7 no.2
    • /
    • pp.29-35
    • /
    • 2003
  • The monitoring and diagnostics of the rotating machinery have been received considerable attention for many years. The objectives are to classify the machinery condition and to find out the cause of abnormal condition. This paper describes a classification method of diagnosing the small reciprocating compressor for refrigerators using the artificial neural network and the wavelet transform. In order to extract salient features, the wavelet transform are used from primary noise signals. Since the wavelet transform decomposes raw time-waveform signals into two respective parts in the time space and frequency domain, more and better features can be obtained easier than time-waveform analysis. In the training phase for classification, self-organizing feature map(SOFM) and learning vector quantization(LVQ) are applied, and the accuracies of them ate compared with each other. This paper is focused on the development of an advanced signal classifier to automatize the vibration signal pattern recognition. This method is verified by small reciprocating compressors, for refrigerator and normal and abnormal conditions are classified with high flexibility and reliability.

  • PDF

HMM-Based Human Gait Recognition (HMM을 이용한 보행자 인식)

  • Sin Bong-Kee;Suk Heung-Il
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.5
    • /
    • pp.499-507
    • /
    • 2006
  • Recently human gait has been considered as a useful biometric supporting high performance human identification systems. This paper proposes a view-based pedestrian identification method using the dynamic silhouettes of a human body modeled with the Hidden Markov Model(HMM). Two types of gait models have been developed both with an endless cycle architecture: one is a discrete HMM method using a self-organizing map-based VQ codebook and the other is a continuous HMM method using feature vectors transformed into a PCA space. Experimental results showed a consistent performance trend over a range of model parameters and the recognition rate up to 88.1%. Compared with other methods, the proposed models and techniques are believed to have a sufficient potential for a successful application to gait recognition.

A Virtual Robot Arm Control by EMG Pattern Recognition of Fuzzy-SOFM Method (가상 로봇 팔 제어를 위한 퍼지-SOFM 방식의 근전도 패턴인식)

  • 이정훈;정경권;이현관;엄기환
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.40 no.2
    • /
    • pp.9-16
    • /
    • 2003
  • We proposed a method of a virtual robot arm controlled by the EMG pattern recognition using an improved SOFM method. The proposed method is simple in that the EMG signals are used as SOFM's input directly without preprocessing but nevertheless input patterns are reliably classified and then used for fuzzy logic systems to automatically tune the neighborhood and the learning rate. In order to verify the effectiveness of the proposed method, we experimented on EMG pattern recognition of 6 movements from the shoulder, wrist, and elbow. Experimental results show that the proposed SOFM method has 21.7% higher recognition rate than the general SOFM method, the average number of learning iterations has been decreased, and then the virtual robot arm is controlled by EMG pattern recognition.

A Study on the Reliability Improvement of Partial Discharge Pattern Recognition using Neural Network Combination (NNC) Method (Neural Network Combination (NNC) 기법을 이용한 부분방전 패턴인식의 신뢰성 향상에 관한 연구)

  • Kim, Seong-Il;Jeong, Seung-Yong;Koo, Ja-Yoon;Lim, Yun-Sok;Koo, Sun-Geun
    • Proceedings of the KIEE Conference
    • /
    • 2005.11a
    • /
    • pp.9-11
    • /
    • 2005
  • 본 연구는 GIS 진단신뢰성 향상기술 개발을 목적으로, 16개의 인위적 결함을 이용하여 부분방전 신호를 발생시키고 검출하여 그 패턴인식 확률을 높이기 위하여 신경망에 Genetic Algorithm (GA) 을 적용하였다. 이를 위하여 다음과 같은 5가지 서로 다른 신경망 모델을 선택하였다: Back Propagation (BP), Jordan-Elman Network (JEN), Principal Component Analysis (PCA), Self-Organizing Feature Map (SOFM) 및 Support Vector Machine (SVM). 이와 같이 선택된 모델에 동일한 데이터를 학습 시키고 패턴인식 확률을 비교 및 분석하였다. 실험 결과에 의하면, BP의 인식률이 가장 높고 다음으로 JEN의 인식률이 높이 나타났으며, 후자의 경우 모든 결함에 대하여 정확한 패턴분류를 한 반면에 전자의 경우 1.8% 의 분류 오차가 발생하였다. 따라서 인식률이 높은 신경망이 더 정확한 패턴분류를 보장하지 못한다는 실험적 결과를 고려 할 때, 인식률이 높은 두 개의 모델을 선정하여 각각의 출력에 일정한 가중치를 주고 합산하여 새로운 출력을 얻는 방법을 제안한다.

  • PDF