• 제목/요약/키워드: self-motion

검색결과 505건 처리시간 0.024초

대칭 형태로 기울어진 와류 생성기를 이용한 열전달 시스템 수치 해석 (Numerical Analysis of Heat Transfer System Using a Symmetric Flexible Vortex Generator in a Poiseuille Channel Flow)

  • 김정현;박성군
    • 한국가시화정보학회지
    • /
    • 제18권1호
    • /
    • pp.67-73
    • /
    • 2020
  • Flexible structures have been adopted in heat transfer systems as vortex generators. The flexible vortex generators immersed in a flow show a self-sustained oscillatory motion, which enhances fluid mixing and heat transfer. In the present study, the vortex generators in a two-dimensional channel flow are numerically investigated, and they are symmetrically mounted on the upper and lower walls with an inclination angle. The momentum interaction and heat transfer between the flexible vortex generators and the surrounding fluid are considered by using an immersed boundary method. The inclination angle is one of the important factors in determining the flapping kinematics of the flexible vortex generators. The flapping amplitude increases as the inclination angle increases, thereby enhancing fluid mixing. The heat transfer is enhanced up to 80% comparing to the baseline channel flow.

무릎 골관절염 환자의 보행속도에 따른 하지 관절 강성 변화 (Changes of Lower Limb Joints Stiffness with Gait Speed in Knee Osteoarthritis)

  • 박희원;박수경
    • 한국정밀공학회지
    • /
    • 제29권7호
    • /
    • pp.723-729
    • /
    • 2012
  • Spring-like leg models have been employed to explain various dynamic characteristics in human walking. However, this leg stiffness model has limitations to represent complex motion of actual human gait, especially the behaviors of each lower limb joint. The purpose of this research was to determine changes of total leg stiffness and lower limb joint stiffness with gait speed in knee osteoarthritis. Joint stiffness defined as the ratio of the joint torque change to the angular displacement change. Eight subjects with knee osteoarthritis participated to this study. The subject walked on a 12 m long and 1 m wide walkway with three sets of four different randomly ordered gait speeds, ranging from their self-selected speed to maximum speed. Kinetic and kinematic data were measured using three force plates and an optical marker system, respectively. Joint torques of lower limb joints calculated by a multi-segment inverse dynamics model. Total leg and each lower limb joint had constant stiffness during single support phase. The leg and hip joint stiffness increased with gait speed. The correlation between knee joint angles and torques had significant changed by the degree of severity of knee osteoarthritis.

Seismic performance and design of bridge piers with rocking isolation

  • Chen, Xingchong;Xia, Xiushen;Zhang, Xiyin;Gao, Jianqiang
    • Structural Engineering and Mechanics
    • /
    • 제73권4호
    • /
    • pp.447-454
    • /
    • 2020
  • Seismic isolation technology has a wide application to protect bridges from earthquake damage, a new designed bridge pier with seismic isolation are provided for railways in seismic regions of China. The pier with rocking isolation is a self-centering system under small and moderate earthquakes, and the unbonded prestressed tendons are used to prevent overturning under strong earthquakes. A numerical model based on pseudo-static testing results is presented to evaluate the seismic performance of isolation bridge piers, and is validated by the shaking table test. It is found that the rocking response and the loss of prestressing for the bridge pier increase with the increase of earthquake intensity. Besides, the intensity and spectral characteristics of input ground motion have great influence on displacement of the top and bottom of the bridge pier, while have less influence on the bending moment of the pier bottom. Experimental and numerical results show that the rocking-isolated piers presented in this study have good seismic performance, and it provides an alternative way for the railway bridge in the regions with high occurrence of earthquakes. Therefore, we provide the detailed procedures for seismic design of the rocking-isolated bridge pier, and a case study of the seismic isolation design with rocking piers is carried out to popularize the seismic isolation methods.

Experiment Research of Autonomous Driving Valve for Pulse Detonation Rocket Engine

  • Matsuoka, Ken;Yamaguchi, Hiroyuki;Nemoto, Toyoshi;Yageta, Jun;Kasahara, Jiro;Yajima, Takashi;Kojima, Takayuki
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.419-426
    • /
    • 2008
  • As pulse detonation engine(PDE) does not need compression mechanisms such as compressors because self-sustained detonation waves are able to compress propellant gases by their incident shock waves, the PDE can have a simple straight-tube structure. In this study, we propose an autonomous driving valve system of the PDE, which fill premixed gases into the PDE tubes at high frequency with high mass flow rate. The proposed valve is composed of only three parts: a piston, a cylinder, and a spring. This valve system can produce intermittent flow at high mass flow rate, and also can keep stable reciprocal motion by using the propellant-gas enthalpy. When the cylinder content product is assumed to be constant, experimental results of the mass flow rate were approximately equal to the calculation model. We confirmed the autonomous driving valve performance by experiments, and concluded that this extremely simple valve with no electrical power and controller can be used as the PDE propellant supply system.

  • PDF

보행 지면 상태에 따른 노인의 운동학적 보행 메카니즘 (Kinematic Mechanism of Gait on Different Road Conditions in Older Women)

  • 하종규;기재석;장영관;이은영
    • 대한안전경영과학회지
    • /
    • 제17권3호
    • /
    • pp.163-171
    • /
    • 2015
  • The aim of this study was to investigate kinematic mechanism of gait different road conditions(dry vs. oil) in order women. For this study, twenty older women and ten young women participated in this research. twelve infrared cameras were used to collect data. It appeared that the gait strategies of older women were slower velocity and higher CoM than young women. Depending on road conditions, gait velocities of dominant muscle older women on dry surface were faster than dominant sense older women, but those of them were inverse on oil surface. The slip displacement of dominant muscle older women was less than young women, but the slip displacement of dominant sense older women was greater than young women. In case of blind during stance phase on oil surface, the rotational motion of the ankle and knee joints were increased. In conclusion, older women were subjected to self-organization theory and phase shift in dynamic theory.

스포츠 레저 인구 확산에 따른 안전 상의에 관한 연구 -모터사이클 상의를 중심으로- (A Study on the Safety Vest by Sports and Leisure Population Distribution -Focusing on Motorcycle Vest-)

  • 이현영
    • 패션비즈니스
    • /
    • 제22권5호
    • /
    • pp.125-136
    • /
    • 2018
  • This study intended to develop a motorcycle safe vest that can be prepared against accidents by mounting a smart module (with built-in sensor) on the safe vest in order to emphasize safety among functional aspects of the motorcycle clothing. The research method investigated professional books, prior research, and Internet data to examine the characteristics of motorcycle wear and the theoretical examination of smart wear, and analyzed the functional characteristics of the design by reviewing smart jacket and vest design cases for motorcycles currently on the market. As a results of study an interface device sensor, which contains a sensor with IMU(Intertial Measurement Unit) and CPU(Central Processing Unit), was inserted into a motorcycle top in order to draw attention to the safety of motorcycle riders. The IMU sensor attached to the vest detected the tilting motion of the rider to either left or right side to obtain data on left or right direction, sudden stop, and so forth and displayed left or right turn signal and sudden stop sign on the backplate (back) through the LED module. As for charging the device to operate LEDs, a generator, which is designed to convert the heat energy in the exhaust into electric energy, was used to efficiently self-produce the power required to operate LEDs of the top while riding.

다채널 말초 신경신호의 실시간 디코딩 (Real-Time Decoding of Multi-Channel Peripheral Nerve Activity)

  • 지인혁;이연정;추준욱
    • 전기전자학회논문지
    • /
    • 제24권4호
    • /
    • pp.1039-1049
    • /
    • 2020
  • 신경의수를 제어하기 위해서는 사용자의 의도를 인식하는 신경신호 디코딩이 중요하다. 본 논문에서는 다채널 말초 신경신호의 실시간 디코딩 방법을 제안한다. 말초 신경신호는 정중신경과 요골신경에서 측정되었으며 운동잡음은 국소 근사 다항식에 의해 제거되었다. 다음으로 활동전위는 k-평균 알고리즘으로 분류되었다. 특징벡터는 활동전위의 발화율로부터 추출되었으며 자기 조직화 특징지도를 통해 차원이 축소되었다. 마지막으로 다층 퍼셉트론으로 손동작을 분류하였다. 원숭이 실험에서 모든 신호처리가 실시간 제한조건 이내에 완료되었으며 높은 성공률로 손동작을 인식할 수 있었다.

Research on Technology Production in Chinese Virtual Character Industry

  • Pan, Yang;Kim, KiHong;Yan, JiHui
    • International Journal of Internet, Broadcasting and Communication
    • /
    • 제14권4호
    • /
    • pp.64-79
    • /
    • 2022
  • The concept of Virtual Character has been developed for a long time with people's demand for cultural and entertainment products such as games, animations, and movies. In recent years, with the rapid development of concepts and industries such as social media, self-media, web3.0, artificial intelligence, virtual reality, and Metaverse, Virtual Character has also expanded new derivative concepts such as Virtual Idol, Virtual YouTuber, and Virtual Digital Human. With the development of technology, people's life is gradually moving towards digitalization and virtualization. At the same time, under the global environment of the new crown epidemic, human social activities are rapidly developing in the direction of network society and online society. From the perspective of digital media content, this paper studies the production technology of Virtual Character related products in the Chinese market, and analyzes the future development direction and possibility of the Virtual Character industry in combination with new media development directions and technical production methods. Consider and provide reference for the development of combined applications of digital media content industry, Virtual Character and Metaverse industry.

Vibration-based structural health monitoring using CAE-aided unsupervised deep learning

  • Minte, Zhang;Tong, Guo;Ruizhao, Zhu;Yueran, Zong;Zhihong, Pan
    • Smart Structures and Systems
    • /
    • 제30권6호
    • /
    • pp.557-569
    • /
    • 2022
  • Vibration-based structural health monitoring (SHM) is crucial for the dynamic maintenance of civil building structures to protect property security and the lives of the public. Analyzing these vibrations with modern artificial intelligence and deep learning (DL) methods is a new trend. This paper proposed an unsupervised deep learning method based on a convolutional autoencoder (CAE), which can overcome the limitations of conventional supervised deep learning. With the convolutional core applied to the DL network, the method can extract features self-adaptively and efficiently. The effectiveness of the method in detecting damage is then tested using a benchmark model. Thereafter, this method is used to detect damage and instant disaster events in a rubber bearing-isolated gymnasium structure. The results indicate that the method enables the CAE network to learn the intact vibrations, so as to distinguish between different damage states of the benchmark model, and the outcome meets the high-dimensional data distribution characteristics visualized by the t-SNE method. Besides, the CAE-based network trained with daily vibrations of the isolating layer in the gymnasium can precisely recover newly collected vibration and detect the occurrence of the ground motion. The proposed method is effective at identifying nonlinear variations in the dynamic responses and has the potential to be used for structural condition assessment and safety warning.

Influence of different parameters on nonlinear friction-induced vibration characteristics of water lubricated stern bearings

  • Lin, Chang-Gang;Zou, Ming-Song;Zhang, Hai-Cheng;Qi, Li-Bo;Liu, Shu-Xiao
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제13권1호
    • /
    • pp.746-757
    • /
    • 2021
  • To investigate the mechanism of friction-induced vibration and noise of ship water lubricated stern bearings, a two-degree-of-freedom (2-DOF) nonlinear self-excited vibration model is established. The novelty of this work lies in the detailed analysis of influence of different parameters on the stability and nonlinear vibration characteristics of the system, which provides a theoretical basis for the various friction vibration and noise phenomenon and has a very important directive meaning for low noise design of water lubricated stern bearings. The results reveal that the change of any parameter, such as rotating speed of shaft, contact pressure, friction coefficient, system damping and stiffness, has an important influence on the stability and nonlinear response of the system. The vibration amplitudes of the system increase as (a) rotating speed of shaft, contact pressure, and the ratio of static friction coefficient to dynamic friction coefficient increase and (b) the transmission damping between motor and shaft decreases. The frequency spectrum of the system is modulated by the first mode natural frequency, which is continuous multi-harmonics of the first mode natural frequency. The response of the system presents a quasi-periodic motion.