• Title/Summary/Keyword: self-interference cancellation

Search Result 60, Processing Time 0.025 seconds

Developing In-Band Full-Duplex Radio in FRS Band (동일대역 전이중 방식 FRS 대역 무전기 개발)

  • Kim, Jae-Hun;Kwak, Byung-Jae;Kim, Young-Sik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.10
    • /
    • pp.769-778
    • /
    • 2017
  • In this paper, a self-interference signal cancellation(SIC) circult for In-band Full-Duplex has been developed and tested in RF/analog region. By use of this SIC circuit, a FM two-way radio has been developed working at FRS(Family Radio Service) band. The two-way radio device is transmitting the FM modulated signal and demodulating the wanted FM signal at the same time. A circulator is used to enable a single antenna to transmit and receive simuultaenously. The receiver circuit needs to cancel out the self-interference signal due to the transmit signal. A vector modulator(VM) is used to control the phase and magnitude of the esitmated signal. And in-phase and quadrature correlators are used to figure out the optimal coefficients of the VM to remove the self-interference signal according to the change of channel environment. In this work, SA58646 has been used as the FM transceiver, and the system is tested with a frequency of 465 MHz and a bandwidth of 12.5 kHz FM signal. The output power is 17.2 dBm at the antenna port, and the self intererence signal level is measured -49.2 dBm at the receiver end. Therefore the SIC level is measured by 66.4 dB.

Peak-to-Average Power Ratio of Orthogonal Frequency Division Multiplexing with ICI Self-Cancellation (채널간간섭 자기소거법이 적용된 직교 주파수분할다중화의 첨두전력 대 평균전력비)

  • Kang Seog Gen
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.42 no.1
    • /
    • pp.1-8
    • /
    • 2005
  • In this paper, peak-to-average power ratio (PAPR) of orthogonal frequency division multiplexing (OFDM) with respect to the subchannel coding schemes for interchannel interference (ICI) self-cancellation is analyzed. It is shown theoretically and experimentally that a shaping component is generated in the transmitted sequence in the conventional correlative coding where a pair of antipodal signals is assigned in adjacent subchannels. Due to the shaping component, the signal powers in the mid and edges of a symbol are scaled by different weighting coefficients, resulting in increased PAPR. To overcome this problem a simple adjacent subchannel coding scheme is presented in this paper. In the new scheme, the shaping component caused by partial repetition of signals is eliminated by assigning a pair of signals in which phase difference varies signal-to-signal. As results, the new scheme has 2-3 dB smaller PAPR than the conventional ICI self-cancellation OFDM while maintaining much higher carrier-to-interference ratio than a normal OFDM system.

Multiple Frequency Offsets Cancellation Scheme Based on Alamouti Coded OFDM for Distributed Antenna Systems in Selective Fading Channel (선택적 감쇄환경에서 분산안테나 간 주파수 오차 환경에 강인한 알라무티부호화 직교주파수분할다중방식 기반 간섭 제거기법)

  • Kim, Bong-Seok;Choi, Kwonhue
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.38A no.12
    • /
    • pp.1039-1044
    • /
    • 2013
  • We propose a cancellation algorithm based on Alamouti coded OFDM to mitigate ICI due to Frequency Offset (FO) between distributed antennas in the frequency selective fading channel. In the cancellation algorithm, the interference signal is estimated by using the initial detection symbol and then the estimated interference signal is subtracted from the received signal. As the accuracy of initial symbol increases, ICI cancellation becomes more significant. Therefore, the accuracy of the initial detection symbols is very important in the cancellation algorithm. The proposed scheme improves the accuracy of the initial detection symbol by employing an ICI self-cancellation scheme. The proposed cancellation scheme with only one iteration achieves better performance compared to the conventional cancellation schemes with many times iterations based on the conventional Alamouti coded OFDM.

An Efficient ICI Self-Cancellation Method with Frequency Offset and Phase Noise in OPDM Systems (OFDM 시스템에서 주파수 오차와 위상 잡음에 의한 ICI를 제거하기 위한 효율적인 자가상쇄 기법)

  • Park, Jeong-Hwan;Kim, Hyung-Myung
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.34 no.2A
    • /
    • pp.155-163
    • /
    • 2009
  • OFDM System is a promising transmission technique due to its spectral efficiency But, a major disadvantage of the OFDM system is its sensitivity to frequency offset and phase noise that makes intercarrier interference (ICI), which degrades the system performance severely The ICI self-cancellation method has a good performance with frequency offset or phase noise. This paper proposed the N/2 spacing data-conjugate method that works well in large frequency offset and phase noise (normalized frequency offset=0.2-0.4, phase noise standard deviation=about lodes). Also, an efficiency ICI cancellation method using pilot was proposed. Simulation results confirm that performance of the proposed scheme is better than conventional schemes.

A Study on the Satellite Nonlinear Effect for Shared-band Transmission (동일 위성채널 전송을 위한 위성 TWTA 비선형 영향 분석)

  • Ryu, Joon-Gyu;Jeong, Soo-Yeop;Oh, Deock-Gil
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.913-914
    • /
    • 2016
  • This paper analyzes the impact of the satellite TWTA non-linearity charateristics for shared band transmission technology to improve spectral efficiency in satellite communication system. In shared band transmission technology for star network, a hub and terminals use same frequency band. In order to receive terminals's signal a hub have to remove the its own DVB-S2 carrier. In this paper the non-linearity impact of satellite TWTA is analyzed for self-interference cancellation.

  • PDF

Individual Channel Estimation Based on Blind Interference Cancellation for Two-Way MIMO Relay Networks

  • He, Xianwen;Dou, Gaoqi;Gao, Jun
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.8
    • /
    • pp.3589-3605
    • /
    • 2018
  • In this paper, we investigate an individual channel estimation problem for multiple-input multiple-output (MIMO) two-way amplify-and-forward (AF) relay networks. To avoid self-interference during the estimation of the individual MIMO channels, a novel blind interference cancellation (BIC) approach is proposed based on an orthogonal preceding framework, where a pair of orthogonal precoding matrices is utilized at the source nodes. By designing an optimal decoding scheme, we propose to decompose the bidirectional transmission into a pair of unidirectional transmissions. Unlike most existing approaches, we make the practical assumption that the nonreciprocal MIMO channel and the mutual interference of multiple antennas are both taken into consideration. Under the precoding framework, we employ an orthogonal superimposed training strategy to obtain the individual MIMO channels. However, the AF strategy causes the noise at the terminal to be the sum of the local noise and the relay-propagated noise. To remove the relay-propagated noise during the estimation of the second-hop channel, a partial noise-nulling method is designed. We also derive a closed-form expression for the total mean square error (MSE) of the MIMO channel from which we compute the optimal power allocation. The simulation results demonstrate that the analytical and simulated curves match fully.

Two-Way MIMO AF Relaying Methods Having a Legacy Device without Self-Interference Cancellation (자기간섭 제거 기능이 없는 기존 단말을 가지는 양방향 다중입출력 중계 증폭 전송 기법)

  • Lee, Kyoung-Jae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.2
    • /
    • pp.338-344
    • /
    • 2017
  • In this paper, two-way amplify-and-forward relay methods are investigated where two terminals and one relay node are equipped with multiple antennas. In two-way relay channels, it is assumed that one terminal can eliminate its own self-interference but the other cannot. For this channel, we first maximize the sum-rate performance by employing an iterative gradient descent (GD) algorithm. Then, a simple singular value decomposition (SVD) based block triangularization is developed to null the self-interference. Simulation results show the proposed methods outperform the conventional schemes for various environments.

A Full Duplex MAC Protocol of Asymmetric Traffic Environment (비대칭 트래픽 환경에서의 전이중 MAC 프로토콜)

  • Ahn, Hyeongtae;Kim, Cheeha
    • KIISE Transactions on Computing Practices
    • /
    • v.22 no.8
    • /
    • pp.381-386
    • /
    • 2016
  • Recently full-duplex communication in wireless networks is enabled by the advancement of self-interference cancellation technology. Full-duplex radio is a promising technology for next-generation wireless local area networks (WLAN) because it can simultaneously transmit and receive signals within the same frequency band. Since legacy medium access control (MAC) protocols are designed based on half-duplex communication, they are not suitable for full-duplex communication. In this paper, we discuss considerations of full-duplex communication and propose a novel full-duplex MAC protocol. We conducted a simulation to measure the throughput of our MAC protocol. Through the simulation results, we can verify that significant throughput gains of the proposed full-duplex MAC protocol, thus comparing the basic full-duplex MAC protocol.

Implementation of Self-Interference Signal Cancelation System in RF/Analog for In-Band Full Duplex (동일대역 전이중 통신을 위한 RF/아날로그 영역에서의 자기간섭 신호 제거 시스템 구현)

  • Lee, Jiho;Chang, Kapseok;Kim, Youngsik
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.3
    • /
    • pp.277-283
    • /
    • 2016
  • In this paper, a system of self-interference signal cancelation for in-band full duplex has been implemented and tested in RF/analog region. The system performance has been evaluated with NI5791 platform and NI Flex RIO. Due to the low power level of the NI5791, the RF signal is amplified by SKYWORKS SE2565T power amplifier. A circulator is used to feed the antenna both the transmitter and receiver. The RF FIR filter is designed by twelve delay taps in two different groups, and the interval between each delay tap is designed to have 100 ps. The amplified signal is distributed to antenna and the FIR filter by use of a 10 dB directional coupler. The tap coefficients of the RF FIR filter are tuned to estimate the self-interference signal coming from antenna reflection and the leakage of the circulator, and the self-interference signal is subtracted. The system is test with 802.11a/g 20 MHz OFMD at 2.56 GHz, and the output power of the amplifier of 0 dBm. The self-interference signal is canceled out by 53 dB.