• Title/Summary/Keyword: self-heating surfaces

Search Result 3, Processing Time 0.018 seconds

Friction and Wear at Dry Sliding Low Carbon Steel Surfaces Under Vacuum Conditions (진공분위기 내에서 건조마찰 미끄럼운동을 하는 저탄소강 표면의 마찰마모 특성)

  • 공호성;윤의성;권오관
    • Tribology and Lubricants
    • /
    • v.10 no.3
    • /
    • pp.29-38
    • /
    • 1994
  • The friction and wear of mild steel at dry sliding surfaces under different vacuum conditions have been investigated to understand the wear mechanisms. For the test, a ball-ondisk typed wear-rig has been built and implemented, allowing control of sliding speed, load and vacuum. Results show that, at a high sliding velocity, friction of low carbon steel (SS41) under a high vacuum is much higher than that of ambient condition and wear is much severer. It is due to lack of effective oxidation film formation on which steel surfaces could protect themselves against the severe wear. It has been shown, however, that there is a critical regime with contact conditions (at a low sliding velocity, a low load, and under a medium vacuum) at which effective, protective films of low carbon steel have been built on the surfaces in a friction process with a self-regulating way, resulting in both very low coefficients of friction (about 0.3) and mild wear. In order to investigate the protective films on steel surfaces, the worn surfaces and the wear debris have been experimentally analyzed with SEM, AES/SAM and XRD. A theoretical analysis of frictional heating at sliding surfaces, and an experimental analysis of the influence of oxidation wear under various vacuum conditions are described. The important variables on which self-formations of protective films at dry sliding surfaces depend, and the wear mechanisms are also investigated.

Desalination of geothermal water by membrane distillation

  • Gryta, M.;Palczynski, M.
    • Membrane and Water Treatment
    • /
    • v.2 no.3
    • /
    • pp.147-158
    • /
    • 2011
  • Membrane distillation process was used for desalination of hot (333 K) geothermal water, which was applied in the plant producing heating water. The investigated water contained 120 g salts/$dm^3$, mainly NaCl. The mineral composition was studied using an ion chromatography method. The obtained rejection of solutes was closed to 100%, but the small amounts of $NH_3$ also diffused through the membrane together with water vapour. However, the composition of obtained distillate allowed to use it as a makeup water in the heating water system. The geothermal water under study was concentrated from 120 to 286 g NaCl/$dm^3$. This increase in the solution concentration caused the permeate flux decline by a 10-20%. The geothermal water contained sulphates, which was subjected to two-fold concentration to achieve the concentration 2.4-2.6 g $SO{_4}{^{2-}}/dm^3$ and the sulphates then crystallized in the form of calcium sulphate. As a results, an intensive membranes scaling and the permeate flux decline was observed. The XRD analysis indicated that beside the gypsum also the NaCl crystallites were deposited on the membrane surfaces. The fresh geothermal water dissolved the mixed $CaSO_4$ and NaCl deposit from the membrane surface. This property can be utilized for self-cleaning of MD modules. Using a batch feeding of MD installation, the concentration of geothermal water was carried out over 800 h, without significant performance losses.

Characteristics of $YBa_2Cu_3O_{7-x}$ Thin Films on $SrTiO_3$ substrate with surface modification by Au nanoparticles (STO기판에 금 나노입자가 분산된 YBCO 박막의 특성)

  • Oh, Se-Kweon;Jang, Gun-Eik;Tran, Hai Duc;Kang, Byoung-Won;Lee, Cho-Yeon;Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.3
    • /
    • pp.7-11
    • /
    • 2010
  • For many large-scale applications of high-temperature superconducting materials, large critical current density($J_c$) in high applied magnetic fields are required. A number of methods have been reported to introduce artificial pinning centers(APCs) in $YBa_2Cu_3O_{7-\delta}$(YBCO) films for enhancement of their $J_c$. In this work, we investigated electric characteristic of YBCO films on $SrTiO_3$ (100) substrates whose surfaces were modified by the introduction of Au nanoparticles (AuNPs). Au nanoparticles were uniformly dispersed on STO substrates with one of typical solution techniques, self assembled monolayer. After heating the STO substrates with Au nanoparticles, the size of Au nanoparticles was around 29~32 nm in height and 41~49 nm in diameter. XRD diffraction patterns taken on the YBCO film with Au nanoparticles show the c-axis orientation. The measured $T_c$ of YBCO /AuNPs films was around 89K and the $J_c$ was 0.75 MA/$cm^2$ at 65 K and 1 T.