• 제목/요약/키워드: self-heating

검색결과 272건 처리시간 0.028초

Effusion Cell 방식에 의한 <111> 결정구조의 Au 박막의 제작 (Au Thin Film Fabrication of <111> Crystal Structure by Effusion Cell Process)

  • 표경수;김강대;김용규;송정근
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2004년도 하계종합학술대회 논문집(2)
    • /
    • pp.383-386
    • /
    • 2004
  • The one of important requisites for fabricating molecular electronic device is the single crystal direction of bottom substrate nowadays. [1,2]. We obtain the optimum SAM result when the Au crystal is <111> structure for Self-Assembled molecular. To get the <111> crystal Au, we generally repeat heating and cooling course after evaporating Au [3]. However, we can fabricate <111> crystal Av thin film except post treatment because we simultaneously evaporate and anneal using Effusion Cell. In this paper, we study on thin film growth of <111> crystal Au as bottom electrode which is essential for Self-Assembled molecular by Effusion Cell and analyze crystal structure, thickness, surface conductivity and so on as each process condition.

  • PDF

돌극형 동기 발전기의 무효전력 공급 한계 해석 및 우선공급계통에의 적용 (Analysis of Reactive Power Capability for Salient Synchronous Generators, and its Application to Primary Restorative Systems)

  • 이흥재;박성민
    • 전기학회논문지
    • /
    • 제56권1호
    • /
    • pp.14-17
    • /
    • 2007
  • Power system restoration following a massive blackout starts with re-energizing primary restorative transmission systems at first. The comparison of the TLCC(transmission line charging capacity) and the RPC(reactive power capability) of related black-start generator should be considered in this stage because overvoltage can be caused by self-excitation at the generator when the RPC is smaller than the TLCC. The RPC can be decided by two criteria. One is stator end core heating, and the other is steady state stability. RPC in steady state stability area has been found based on a synchronous reactance Xd. This paper presents RPC limit of salient pole machine which is different from that of non-salient pole machine in steady state stability area and shows derivation process about that.

Uniform Grafting of Poly(1,5-dioxepan-2-one) by Surface-Initiated, Ring-Opening Polymerization

  • Yoon Kuk-Ro;Yoon Ok-Ja;Chi Young-Shik;Choi Insung-S.
    • Macromolecular Research
    • /
    • 제14권2호
    • /
    • pp.205-208
    • /
    • 2006
  • A polymeric film of a biodegradable poly(1,5-dioxepan-2-one) (PDXO) was formed on a gold surface by a combination of the formation of self-assembled monolayers (SAMs) presenting hydroxyl groups and the surface-initiated, ring-opening polymerization (SI-ROP) of 1,5-dioxepan-2-one (DXO). The SI-ROP of DXO was achieved by heating a mixture of $Sn(Oct)_2$, DXO, and the SAM-coated substrate in anhydrous toluene at $55^{\circ}C$. The resulting PDXO film was quite uniform. The PDXO film was characterized by polarized infrared external reflectance spectroscopy, X-ray photoelectron spectroscopy, time-of-flight secondary ion mass spectrometry, atomic force microscopy, ellipsometry, and contact angle goniometry.

Self-Regulation of Star Formation Rates: an Equilibrium Vieww

  • Kim, Chang-Goo;Ostriker, Eve C.
    • 천문학회보
    • /
    • 제41권2호
    • /
    • pp.55.2-55.2
    • /
    • 2016
  • In this talk, I will present a theoretical and numerical framework for self-regulation of the star formation rates (SFRs) in disk galaxies. The theory assumes (1) force balance between pressure support and the weight of the interstellar medum (ISM), (2) thermal balance between radiative cooling in the ISM and heating via FUV radiation from massive young stars, and (3) turbulent energy balance between dissipation in the ISM and driving by momentum injection of SNe. Numerical simulations show vigorous dynamics in the ISM at all times, but with proper temporal and spatial averages, all the expected balances hold. This leads to a scaling relation between mean SFRs and galactic gas and stellar properties, arising from the fundamental relationship between SFR surface density and the total midplane pressure.

  • PDF

제어자발화 가솔린기관의 성능 특성 (Performance Characteristics of a Controlled Auto-Ignition Gasoline Engine)

  • 김홍성
    • 한국기계가공학회지
    • /
    • 제4권1호
    • /
    • pp.56-62
    • /
    • 2005
  • In this study, A controlled auto-ignition (CAI) single cylinder gasoline engine is considered, focusing on the extension of operating conditions. The fuel is injected indirectly into electrically heated inlet air flow. Investigated are the engine performance characteristics under the wide range of operating conditions such as 32 to 63 in the air-fuel ratio, 1000 to 1800 rpm in the engine speed, and 150 to $180^{\circ}C$ in the inlet-air temperature. A controlled auto-ignition gasoline engine which has the super ultra lean-burn with self-ignition of gasoline fuel can be achieved by heating inlet air.

  • PDF

Thermal Hazard Evaluation on Self-polymerization of MDI

  • Sato, Yoshihiko;Okada, Ken;Akiyoshi, Miyako;Murayama, Satoshi;Matsunaga, Takehiro
    • International Journal of Safety
    • /
    • 제9권1호
    • /
    • pp.6-11
    • /
    • 2010
  • Thermal analysis, heating test on gram scale and simulation of exothermic behavior based on kinetic analysis has been conducted in order to evaluate thermal hazards of self-polymerization of MDI. The exothermic reactions of MDI are expected to be the polymerization which forms carbodiimide and carbon dioxide, dimerization and trimerization. When MDI is kept in adiabatic condition during 1 week (10080 hours), the simulated result shows runaway reaction can occur in the case that initial temperature was more than $130^{\circ}C$. The relationship between the initial temperature (T, $^{\circ}C$) and TMR is given in a following equation. TMR=$4.493{\times}10^{-7}$ exp ($9.532{\times}10^3$/(T+273.15)) We propose that the relationship gives important criteria of handling temperature of MDl to prevent a runaway reaction.

능동적 신재생에너지 생산을 통한 하수처리장 에너지자립화 향상 (Improving Energy Self-sufficiency in Municipal Wastewater Treatment Plant using Renewable Energy Production)

  • 강지훈;채규정;김동수;양희정;안영섭;김원경;김정현;박동을
    • 한국수자원학회:학술대회논문집
    • /
    • 한국수자원학회 2012년도 학술발표회
    • /
    • pp.643-643
    • /
    • 2012
  • Increasing energy prices and growing concerns about global warming address the need to improve energy self-sufficiency in many industrial and municipal sectors. Wastewater treatment plants (WWTPs) are representative of energy-consuming facilities in Korea, accounting for 5% of national energy consumption. We present renewable energy technologies and energy self-sufficiency scenarios in a municipal WWTP ($30,000m^3d^{-1}$) located in Yongin, South Korea. By employing photovoltaics (PV, 135 kW), small hydropower turbine (10 kW), and thermal energy from treated effluent (25 RT: refrigeration ton) within the WWTP, a total of 142 tonne of oil equivalent (toe) of energy was estimated to be generated, accounting for $365ton\;CO_2\;yr^{-1}$ of greenhouse gas emission reduction. Core renewable technologies under consideration include 1) hybrid solar PV system consisting of fixed PV, dual-axis PV, and building integrated PV, 2) low-head small hydropower plant specifically designed for treated effluent, 3) effluent heat recovery system for heating and air conditioning. In addition to these core technologies, smart operation and management scheme will be presented for enhancing overall energy savings and distribution within the WWTP.

  • PDF

Performance of self-compacting concrete at room and after elevated temperature incorporating Silica fume

  • Ahmad, Subhan;Umar, Arshad;Masood, Amjad;Nayeem, Mohammad
    • Advances in concrete construction
    • /
    • 제7권1호
    • /
    • pp.31-37
    • /
    • 2019
  • This paper evaluates the workability and hardened properties of self-compacting concrete (SCC) containing silica fume as the partial replacement of cement. SCC mixtures with 0, 2, 4, 6, 8 and 10% silica fume were tested for fresh and hardened properties. Slump flow with $T_{500}$ time, L-box and V-funnel tests were performed for evaluating the workability properties of SCC mixtures. Compressive strength, splitting tensile strength and modulus of rupture were performed on hardened SCC mixtures. Experiments revealed that replacement of cement by silica fume equal to and more than 4% reduced the slump flow diameter and increased the $T_{500}$ and V-funnel time linearly. Compressive strength, splitting tensile strength and modulus of rupture increased with increasing the replacement level of cement by silica fume and were found to be maximum for SCC mixture with 10% silica fume. Further, residual hardened properties of SCC mixture yielding maximum strengths (i.e., SCC with 10% silica fume) were determined experimentally after heating the concrete samples up to 200, 400, 600 and $800^{\circ}C$. Reductions in hardened properties up to $200^{\circ}C$ were found to be very close to normal vibrated concrete (NVC). For 400 and $600^{\circ}C$ reductions in hardened properties of SCC were found to be more than NVC of the same strength. Explosive spalling occurred in concrete specimens before reaching $800^{\circ}C$.

최적 입사 광 전력 하에서의 대칭 ESQWs SEED의 비트 전송률 특성 분석 (Bit-Rate Analysis of Various Symmetric ESQWs SEED under Optimized Input Power)

  • 임연섭;최영완
    • 전자공학회논문지D
    • /
    • 제36D권7호
    • /
    • pp.66-79
    • /
    • 1999
  • 본 논문에서는 얕은 양자 우물(extremely shaliow quantum wells, ESQWs)을 사용한 광 쌍안정 대칭형 자기 전광 소자(symmetric self elctrooptic effect device, S-SEED)의 성능에 있어서 높은 입사 광전력의 영향을 조사한다 . 다음과 같은 네 가지 ESQWs S-SEED 구조를 고려하였다. 무 반사 입힘(AR-coated) ESQWs S-SEED, back-to-back ARcoated ESQWs S-SEED, 비대칭 공명구조(AFP) ESQWs S-SEED, back-toback AFP ESQWs S-SEED. 입사 광 전력이 증가함에 따라 On/Off 대조비, On/Off 반사율 차이와 같은 소자성능은 ohmic heating 과 여기자 포화(exciton saturation)의 영향으로 심각하지 않게 저하된다. 한편 소자의 스위칭 속도는 지속적으로 증가하다가 특정 입사 광 전력 하에서 점차 감소하기 시작한다. 직렬 광 연결 시스템(cascading optical interconnection system)에 있어서 소자의 최대 속도 스위칭 동작을 위한 최대 입사 광 전력의 최적화를 바탕으로 0 V와 5 V의 외부 전압 조건에서 양자우물의 수를 변화시키면서 $5{\times}5{\mu}m^2$의 mesa 영역에 대하여 네 가지 ESQWs S-SEED의 시스템 비트 레이트를 모의 실험하고 그 결과를 분석하였다.

  • PDF

TEM Study on the Growth Characteristics of Self-Assembled InAs/GaAs Quantum Dots

  • Kim, Hyung-Seok;Suh, Ju-Hyung;Park, Chan-Gyung;Lee, Sang-Jun;Noh, Sam-Gyu;Song, Jin-Dong;Park, Yong-Ju;Lee, Jung-Il
    • Applied Microscopy
    • /
    • 제36권spc1호
    • /
    • pp.35-40
    • /
    • 2006
  • Self-assembled InAs/GaAs quantum dots (QDs) were grown by the atomic layer epitaxy (ALE) and molecular beam epitaxy (MBE) techniques, The structure and the thermal stability of QDs have been studied by high resolution electron microscopy with in-situ heating experiment capability, The ALE and MBE QDs were found to form a hemispherical structure with side facets in the early stage of growth, Upon capping by GaAs layer, however, the apex of QDs changed to a flat one. The ALE QDs have larger size and more regular shape than those of MBE QDs. The QDs collapse due to elevated temperature was observed directly in atomic scale, In situ heating experiment within TEM revealed that the uncapped QDs remained stable up to $580^{\circ}C$, However, at temperature above $600^{\circ}C$, the QDs collapsed due to the diffusion and evaporation of In and As from the QDs, The density of the QDs decreased abruptly by this collapse and most of them disappeared at above $600^{\circ}C$.