• Title/Summary/Keyword: self-combustion reaction

Search Result 55, Processing Time 0.023 seconds

Simultaneous Synthesis and Sintering of Titanium Carbide by HPCS(High Pressure-Self Combustion Sintering) (고압연소 소결(HPCS)법에 의한 탄화티타늄(TiC)의 합성 및 소결)

  • 김지헌;최상욱;조원승;조동수;오장환
    • Journal of the Korean Ceramic Society
    • /
    • v.34 no.5
    • /
    • pp.473-482
    • /
    • 1997
  • Titanium carbide(TiC) has a poor sinterability due to the strong covalent bond. Thus, it is generally fabricated by either hot pressing or pressureless-sintering at elevated temperature by the addition of sintering aids such as nickel(Ni), molybdenum(Mo) and cobalt(Co). However, these sintering methods have the following disadvantages; (1) the complicated process, (2) the high energy consumption, and (3) the possibility of leaving inevitable impurities in the product, etc. In order to reduce above disadvantages, we investigated the optimum conditions under which dense titanium carbide bodies could be synthesized and sintered simultaneously by high pressure self-combustion sintering(HPCS) method. This method makes good use of the explosive high energy from spontaneous exothermic reaction between titanium and carbon. The optimum conditions for the nearly full-densification were as follows; (1) The densification of sintered body becomes high by increasing the pressing pressure from 400kgf/$\textrm{cm}^2$ upto 1200 kgf/$\textrm{cm}^2$. (2) Instead of adding the coarse graphite or activated carbon, the fine particles of carbon black should be added as a carbon source. (3) The optimum molar ratio of carbon to titanium (C/Ti) was unity. In reality, titanium carbide body which were prepared under optimum conditions had relatively dense textures with the apparent porosity of 0.5% and the relative density of 98%.

  • PDF

Neutron Diffraction Study of Powders Prepared by Self-propagating High Temperature Synthesis

  • Park, Yong;Kim, Y S.;Y. D. Hahn;S. H. Shim;Lee, J. S.
    • Proceedings of the Korean Powder Metallurgy Institute Conference
    • /
    • 2000.11a
    • /
    • pp.11-12
    • /
    • 2000
  • Non-stoichiometric ceramics of $Ni_{x}ZnO_{1-x}Fe_{2}O_{4}$ were prepared by self-propagating high temperature synthesis reaction with various processing conditions and their stoichometric numbers were determined by neutron diffraction. The neutron diffraction patterns were measured at room temperature using monochromatic neutrons with a wave length of 0.18339 nm from a Ge(331) mocochromator at a 90 degree take off angle. The Rietveld refinement of each pattern converged to good agreement (x2=1.88-2.24). The neutron diffraction analysis revealed the final stoichiometries of the ferrites were $Ni_{0.38}Zn_{0.62}Fe_{2}O_{4}$ and $Ni_{0.33}Zn_{0.67}Fe_{2}O_{4]$, respectively. This supports that final stoichiometric number of the self-propagating high temperature synthesis product can be controlled by the processing parameters during the combustion reaction.

  • PDF

Analysis of NOx Emissions in Thrbulent Nonpremixed Hydrogen-Air Jet Flames with Coaxial Air (동축 수소 확산화염에서의 NOx 생성 분석)

  • Park, Y.H.;Kim, S.L.;Moon, H.J.;Yoon, Y.B.;Jeung, I.S.
    • Journal of the Korean Society of Combustion
    • /
    • v.5 no.1
    • /
    • pp.19-30
    • /
    • 2000
  • The characteristics of NOx emissions in pure hydrogen nonpremixed flames with coaxial air are analyzed numerically for the three model cases of coaxial air flames classified by varying coaxial air velocity and/or fuel velocity. In coaxial air flames, the flame length is reduced by coaxial air and can be represented as a function of the ratio of coaxial air to fuel velocity. Coaxial air decreases flame reaction zone, resulting in reducing flame residence time significantly. Finally, the large reduction of EINOx is achieved by the decrease of the flame residence time. It is found that because coaxial air can break down the flame self-similarity law, appropriate scaling parameters, which are different from those in the simple jet flames, are recommended. In coaxial air flames, the flame residence time based on the flame volume produces better results than that based on a cube of the flame length. And some portion of deviations from the 1/2 scaling law by coaxial air may be due to the violation of the linear relationship between the flame volume and the flame reaction zone.

  • PDF

Numerical Investigation on the Self-Ignition of High-pressure Hydrogen in a Tube Influenced by Burst Diaphragm Shape (튜브 내 고압 수소의 파열막 형상에 따른 자발 점화 현상에 대한 수치해석)

  • Lee, Hyoung Jin;Kim, Sung Don;Kim, Sei Hwan;Jeung, In-Seuck
    • Journal of the Korean Society of Combustion
    • /
    • v.18 no.3
    • /
    • pp.31-37
    • /
    • 2013
  • Numerical simulations are conducted to investigate the feature of spontaneous ignition of hydrogen within a certain length of downstream tube released by the failure of pressure boundaries of various geometric assumption. The results show that the ignition feature can be varied with the shape of pressure boundary. The ignition at the contact region are developed at the spherical pressure boundaries due to multi-dimensional shock interactions, whereas the local ignition is developed in limited area such as boundary layer at the planar pressure boundary conditions. The spontaneous ignition inside the tube can be generated from the reaction region of only boundary layer regardless of existence of the reaction of core region.

Peculiarities of SHS and Solid State Synthesis of ReBa2Cu3O7-x Materials

  • Soh, Deawha;Natalya, Korobova
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.3
    • /
    • pp.275-280
    • /
    • 2002
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid-stave chase synthesis for production of high temperature superconductor materials were discussed. Oxide superconductors with general formula of $ReBa_2Cu_3O_{7-x}$ (Re=Y, Sm) haute been made by using barium oxide initial powder instead of traditional barium carbonate. Phenomena observed during the grinding of the reactants mixture are presented. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.

The Combustion Characteristice of the Self Preheating Type Catalyic Heat Exchanger (자체 예열식 촉매 열 교환식 연소특성)

  • 유상필;송광섭;서용석;조성준;류인수
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 2001.05a
    • /
    • pp.45-52
    • /
    • 2001
  • The study on the heat exchanger with catalytic combustion was performed as the development of the catalytic combustion applications. This study tried to achieve the both goals-the mixture preheating and the heat transfer to working fluid simultaneously by using the steady state catalytic combustion. The combustion characteristics were investigated with the quantitative, qualitative experimental variants of the mixture. In addition, the temperature distribution of catalytic layer was investigated to investigate the correlation between the combustion characteristics and the heat balance of the catalytic layer. As a result, the steady state reaction within the appropriate range of temperature is the critical factor in catalytic applications. To get this, the sensible control of both the mixture flow and the heat balance of catalytic layer were required.

  • PDF

Effect of Coflow Air Velocity on Heat-loss-induced Self-excitation in Laminar Lifted Propane Coflow-Jet Flames Diluted with Nitrogen (질소로 희석된 프로판 동축류 층류 제트 부상화염에서 열손실에 의한 자기진동에 대한 동축류 속도 효과)

  • Lee, Won-June;Yoon, Sung-Hwan;Park, Jeong;Kwon, Oh-Boong;Park, Jong-Ho;Kim, Tae-Hyung
    • Journal of the Korean Society of Combustion
    • /
    • v.17 no.1
    • /
    • pp.48-57
    • /
    • 2012
  • Laminar lifted propane coflow-jet flames diluted with nitrogen were experimentally investigated to determine heat-loss-related self-excitation regimes in the flame stability map and elucidate the individual flame characteristics. There exists a critical lift-off height over which flame-stabilizing effect becomes minor, thereby causing a normal heat-loss-induced self-excitation with O(0.01 Hz). Air-coflowing can suppress the normal heat-loss-induced self-excitation through increase of a Peclet number; meanwhile it can enhance the normal heat-lossinduced self-excitation through reducing fuel concentration gradient and thereby decreasing the reaction rate of trailing diffusion flame. Below the critical lift-off height. the effect of flame stabilization is superior, leading to a coflow-modulated heat-loss-induced self-excitation with O(0.001 Hz). Over the critical lift-off height, the effect of reducing fuel concentration gradient is pronounced, so that the normal heat-loss-induced self-excitation is restored. A newly found prompt self-excitation, observed prior to a heat-loss-induced flame blowout, is discussed. Heat-loss-related self-excitations, obtained laminar lifted propane coflow-jet flames diluted with nitrogen, were characterized by the functional dependency of Strouhal number on related parameters. The critical lift-off height was also reasonably characterized by Peclet number and fuel mole fraction.

Combustion Synthesis of YAG:Ce Phosphor with Teflon (Teflon을 이용한 YAG:Ce 형광체 합성)

  • Yeon, Jung Woon;Won, Chang Whan;Won, Hyung Il;Nersisyan, H.H.
    • Korean Journal of Metals and Materials
    • /
    • v.50 no.6
    • /
    • pp.439-443
    • /
    • 2012
  • YAG:Ce phosphor were prepared in a self-propagating high-temperature synthesis (SHS) using a $1.5Y_2O_3+2.5Al_2O_3+0.116CeO_2+3.0KClO_3+kCO(NH_2)_2+m(C_2F_4)_n$ precursor mixture. The heat for the combustion propagation was provided by the reaction of a $KClO_3+CO(NH_2)_2+(C_2F_4)n$ mixture. Pure-phase YAG phosphor was synthesized at the combustion temperature of $1210^{\circ}C$ from k=3.6 mole and m=0.3 mole. The as-prepared YAG:Ce phosphor had a particle size of $2-10{\mu}m$. The addition of Teflon to the precursor mixture increased the YAG particle size and its luminescent intensity. The emission peak of the YAG phosphor was blue-shifted with an increase of Teflon concentration.

Preparation of ZrB2 by Self-propagating Synthesis and Its Characteristics (자전연소합성법에 의한 ZrB2 세라믹분말합성 및 NaCl의 영향)

  • Kim, Jinsung;Nersisyan, Hayk;Won, Changwhan
    • Korean Journal of Materials Research
    • /
    • v.24 no.5
    • /
    • pp.255-258
    • /
    • 2014
  • Zirconium boride is an artificial or which is rarely found in the nature. $ZrB_2$ is popular in the hard material industry because it has a high melting point, excellent mechanical properties and chemical stability. There are two known methods to synthesize $ZrB_2$. The first involves direct reaction between Zr and B, and the second is by reduction of the metal halogen. However, these two methods are known to be unsuitable for mass production. SHS(Self-propagating High-temperature Synthesis) is an efficient and economic method for synthesizing hard materials because it uses exothermic reactions. In this study, $ZrB_2$ was successfully synthesized by subjecting $ZrO_2$, Mg and $B_2O_3$ to SHS. Because of the high combustion temperature and rapid combustion, in conjunction with the stoichiometric ratio of $ZrO_2$, Mg and $B_2O_3$; single phase $ZrB_2$ was not synthesized. In order to solve the temperature problem, Mg and NaCl additives were investigated as diluents. From the experiments it was found that both diluents effectively stabilized the reaction and combustion regime. The final product, made under optimum conditions, was single-phase $ZrB_2$ of $0.1-0.9{\mu}m$ particle size.

Fabrication of Mo based Thermal Spray Composite Powder by Self- propagating High- temperature Synthesis (SHS 합성에 의한 몰리브덴계 용사용 복합분말의 제조)

  • Park, Je-Sin;Sim, Geon-Ju
    • Korean Journal of Materials Research
    • /
    • v.11 no.9
    • /
    • pp.763-768
    • /
    • 2001
  • Molybdenum-based thermal spray powder is widely used for coating the moving parts of the internal combustion engines due to its excellent wear resistance. A composite powder of the $Mo_{40}(Al_{1-x}Si_x)_{60}$ system was synthesized using the SHS method. The synthesized bulk was pulverized and specially treated to produce thermal spray powder. It was found that the synthesis reaction consisted of two-steps: the formation of $Al_8/Mo_3$ and the formation of Mo(Al,Si)$_2$. Both the temperature and the rate of the SHS reaction linearly increased with the increase of the value of x in $Mo_{40}(Al_{1-x}Si_x)_{60}$, The temperature and the rate of the reaction were also affected by the compacting density of the specimens, exhibiting the maximum valves at 62% and 60%, respectively. Since spherical shape is advantageous to the thermal spraying process, shape-control of the powder was attempted with PVA as a binding additive, resulting in the successful production of almost perfectly spherical powder of 80 $\mu\textrm{m}$ Ø$(d_{50})$ mean particle size.

  • PDF