• Title/Summary/Keyword: self organizing neural network

Search Result 221, Processing Time 0.035 seconds

Design of Advanced Self-Organizing Fuzzy Polynomial Neural Networks Based on FPN by Evolutionary Algorithms (진화론적 알고리즘에 의한 퍼지 다항식 뉴론 기반 고급 자기구성 퍼지 다항식 뉴럴 네트워크 구조 설계)

  • Park, Ho-Sung;Oh, Sung-Kwun;Ahn, Tea-Chon
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.322-324
    • /
    • 2005
  • In this paper, we introduce the advanced Self-Organizing Fuzzy Polynomial Neural Network based on optimized FPN by evolutionary algorithm and discuss its comprehensive design methodology involving mechanisms of genetic optimization, especially genetic algorithms (GAs). The proposed model gives rise to a structurally and parametrically optimized network through an optimal parameters design available within Fuzzy Polynomial Neuron(FPN) by means of GA. Through the consecutive process of such structural and parametric optimization, an optimized and flexible the proposed model is generated in a dynamic fashion. The performance of the proposed model is quantified through experimentation that exploits standard data already used in fuzzy modeling. These results reveal superiority of the proposed networks over the existing fuzzy and neural models.

  • PDF

Design of Hew Neural network Classifier based on novel neurons with new boundary description (새로운 경계 묘사 뉴런을 가지는 신경회로망 분류기 설계)

  • 고국원;김종형;조형석
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.19-19
    • /
    • 2000
  • This paper introduces a new scheme for neural network classifier which can describe the shape of patterns in clustered group by using a self-organizing teeming algorithm. The prototype based neural network classifier can not describe the shape of group and it has low classification performance when the data groups are complex. To improve above-mentioned problem, new neural scheme is introduced. This proposed neural network algorithm can be regarded as the extension of self-organizing feature map which can describe The experimental results shows that the proposed algorithm can describe the shape of pattern successfully.

  • PDF

Reinforcement Learning Control using Self-Organizing Map and Multi-layer Feed-Forward Neural Network

  • Lee, Jae-Kang;Kim, Il-Hwan
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.142-145
    • /
    • 2003
  • Many control applications using Neural Network need a priori information about the objective system. But it is impossible to get exact information about the objective system in real world. To solve this problem, several control methods were proposed. Reinforcement learning control using neural network is one of them. Basically reinforcement learning control doesn't need a priori information of objective system. This method uses reinforcement signal from interaction of objective system and environment and observable states of objective system as input data. But many methods take too much time to apply to real-world. So we focus on faster learning to apply reinforcement learning control to real-world. Two data types are used for reinforcement learning. One is reinforcement signal data. It has only two fixed scalar values that are assigned for each success and fail state. The other is observable state data. There are infinitive states in real-world system. So the number of observable state data is also infinitive. This requires too much learning time for applying to real-world. So we try to reduce the number of observable states by classification of states with Self-Organizing Map. We also use neural dynamic programming for controller design. An inverted pendulum on the cart system is simulated. Failure signal is used for reinforcement signal. The failure signal occurs when the pendulum angle or cart position deviate from the defined control range. The control objective is to maintain the balanced pole and centered cart. And four states that is, position and velocity of cart, angle and angular velocity of pole are used for state signal. Learning controller is composed of serial connection of Self-Organizing Map and two Multi-layer Feed-Forward Neural Networks.

  • PDF

Servo Control of Hydraulic Motor using Artificial Intelligence (인공지능을 이용한 유압모터의 서보제어)

  • 신위재;허태욱
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.4 no.3
    • /
    • pp.49-54
    • /
    • 2003
  • In this paper, we propose a controller with the self-organizing neural network compensator for compensating PID controller's response. PID controller has simple design method but needs a lot of trials and errors to determine coefficients. A neural network control method does not have optimal structure as the parameters are pre-specified by designers. In this paper, to solve this problem, we use a self-organizing neural network which has Back Propagation Network algorithm using a Gaussian Potential Function as an activation function of hidden layer nodes for compensating PID controller's output. Self-Organizing Neural Network's learning is proceeded by Gaussian Function's Mean, Variance and number which are automatically adjusted. As the results of simulation through the second order plant, we confirmed that the proposed controller get a good response compare with a PID controller. And we implemented the of controller performance hydraulic servo motor system using the DSP processor. Then we observed an experimental results.

  • PDF

The Using of Self-organizing Feature Map for Global Path Planning of Mobile Robot (이동로봇의 전역 경로계획에서 Self-organizing Feature Map의 이용)

  • Cha, Young-Youp;Kang, Hyon-Gyu
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.817-822
    • /
    • 2004
  • This paper provides a global path planning method using self-organizing feature map which is a method among a number of neural network. The self-organizing feature map uses a randomized small valued initial weight vectors, selects the neuron whose weight vector best matches input as the winning neuron, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. On the other hand, the modified method in this research uses a predetermined initial weight vectors, gives the systematic input vector whose position best matches obstacles, and trains the weight vectors such that neurons within the activity bubble are move toward the input vector. According to simulation results one can conclude that the modified neural network is useful tool for the global path planning problem of a mobile robot.

  • PDF

Pattern Classification of the EMG Signals Using Neural Network (신경회로망을 이용한 EMC 신호의 패턴 분류)

  • 최용준;이현관;이승현;강성호;엄기환
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2000.05a
    • /
    • pp.402-405
    • /
    • 2000
  • In this paper we propose a method ef pattern classification of the hand movement using EMG signals through Self-organizing feature map. Self-organizing feature map is an artificial neural network which organizes its output neuron through leaning and therefore it can classify input patterns. The raw EMC signals become direct input to the Self-organizing feature map. The simulation and experiment results showed the effectiveness of the classification of EMG signal using the Self-organizing feature map.

  • PDF

Application of An Adaptive Self Organizing Feature Map to X-Ray Image Segmentation

  • Kim, Byung-Man;Cho, Hyung-Suck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1315-1318
    • /
    • 2003
  • In this paper, a neural network based approach using a self-organizing feature map is proposed for the segmentation of X ray images. A number of algorithms based on such approaches as histogram analysis, region growing, edge detection and pixel classification have been proposed for segmentation of general images. However, few approaches have been applied to X ray image segmentation because of blur of the X ray image and vagueness of its edge, which are inherent properties of X ray images. To this end, we develop a new model based on the neural network to detect objects in a given X ray image. The new model utilizes Mumford-Shah functional incorporating with a modified adaptive SOFM. Although Mumford-Shah model is an active contour model not based on the gradient of the image for finding edges in image, it has some limitation to accurately represent object images. To avoid this criticism, we utilize an adaptive self organizing feature map developed earlier by the authors.[1] It's learning rule is derived from Mumford-Shah energy function and the boundary of blurred and vague X ray image. The evolution of the neural network is shown to well segment and represent. To demonstrate the performance of the proposed method, segmentation of an industrial part is solved and the experimental results are discussed in detail.

  • PDF

The Development of Pattern Classification for Inner Defects in Semiconductor packages by Self-Organizing map (자기조직화 지도를 이용한 반도체 패키지 내부결함의 패턴분류 알고리즘 개발)

  • 김재열;윤성운;김훈조;김창현;송경석;양동조
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.80-84
    • /
    • 2002
  • In this study, researchers developed the est algorithm for artificial defects in the semic packages and performed to it by pattern recogn technology. For this purpose, this algorithm was I that researcher made software with matlab. The so consists of some procedures including ultrasonic acquistion, equalization filtering, self-organizing backpropagation neural network. self-organizing ma backpropagation neural network are belong to metho neural networks. And the pattern recognition tech has applied to classify three kinds of detective pa semiconductor packages. that is, crack, delaminat normal. According to the results, it was found estimative algorithm was provided the recognition r 75.7%( for crack) and 83.4%( for delamination) 87.2 % ( for normal).

  • PDF

New Usage of SOM for Genetic Algorithm (유전 알고리즘에서의 자기 조직화 신경망의 활용)

  • Kim, Jung-Hwan;Moon, Byung-Ro
    • Journal of KIISE:Software and Applications
    • /
    • v.33 no.4
    • /
    • pp.440-448
    • /
    • 2006
  • Self-Organizing Map (SOM) is an unsupervised learning neural network and it is used for preserving the structural relationships in the data without prior knowledge. SOM has been applied in the study of complex problems such as vector quantization, combinatorial optimization, and pattern recognition. This paper proposes a new usage of SOM as a tool for schema transformation hoping to achieve more efficient genetic process. Every offspring is transformed into an isomorphic neural network with more desirable shape for genetic search. This helps genes with strong epistasis to stay close together in the chromosome. Experimental results showed considerable improvement over previous results.

Investigation of Correlation Between Cognition/Emotion Styles and Judgmental Time-Series Forecasting Using a Self-Organizing Neural Network (자기 조직 신경망에 의한 인지/감성 유형의 시계열 직관 예측과의 상관성 조사)

  • Yoo Hyeon-Joong;Park Hung Kook;Cho Taekyung;Park Jongil
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.42 no.3 s.303
    • /
    • pp.29-38
    • /
    • 2005
  • Although people frequently rely on intuition in managing activities, they rarely use it in developing effective decision-making support systems. In this paper, we investigate and compare the correlations between such characteristics as cognition and emotion characteristics and judgmental time-series forecasting accuracy by using a self-organizing neural network, and eventually aim to help build efficient decision-making atmosphere. The neural network used in this paper employs a self-supervised adaptive algorithm, and the feature of which is that it inherently can use correlation between input vectors by exchanging information between neuron clusters in the self-organizing layer during the training. Our experiments showed that both cognition and emotion characteristics had correlations with judgmental time-series forecasting, and that cognition characteristics had larger correlation than emotion characteristics. We also found that conceptual style had larger correlation than behavioral and analytical styles, and displeasure-sleepiness style had larger correlation than pleasure-arousal style with the forecasting.