• Title/Summary/Keyword: selective relaying

Search Result 14, Processing Time 0.027 seconds

Improved Ground differential relaying algorithm for the protection of a line-to-line fault of transformer (변압기의 선간 단락사고 보호를 위한 지락비율차동 계전 알고리즘의 성능향상 방법)

  • Kang, Hae-Gweon;Kim, Jin-Ho;Kim, Se-Chang;Park, Jong-Soo;Park, Jong-Eun
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.760-761
    • /
    • 2011
  • Ground differential relay is used to provide fast, sensitive, and selective protection for the wye connected and grounded electrical power equipment such as generators, power transformers, and grounding transformers. The ground differential protection only protects the ground faults within the protection zone, so that it can't protect the line-to-line fault. This paper proposes the algorithm to provide the protection for the line-to-line fault through the ground differential protection. The proposed algorithm detects the line-to-line fault of transformer using the comparison between the positive and the negative current, when the ground differential relay dose not operate. The performance of the algorithm is verified using a PSCAD/EMTDC simulator under various case studies.

  • PDF

Cooperative Diversity in a Spectrum Sharing Environment

  • Ban, Tea-Won;Jung, Bang-Chul
    • Journal of information and communication convergence engineering
    • /
    • v.9 no.5
    • /
    • pp.515-522
    • /
    • 2011
  • In this paper, we investigate cooperative diversity in a spectrum sharing environment where secondary users utilize primary users' spectrum only if the interference power received at the primary users is maintained below a predetermined level. The outage probability of a selective decode-and-forward (DF) based cooperative diversity scheme in the secondary network is derived to analyze the effects of spectrum sharing on cooperative diversity. Our analytical and simulation results show that the outage probability is saturated at a certain level of transmit power of secondary users due to interference regulation, and, hence, cooperative diversity gains are lost. Through asymptotic analysis, we also identify the critical value of transmit SNR beyond which the outage probability is saturated.

Integrated Protection Method for DC Railway Systems (통합형 직류철도 보호계전 방식)

  • Kang, Sang-Hee;Choi, Chang-Young;Lee, Won-Seok;Jung, Ho-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.2
    • /
    • pp.285-292
    • /
    • 2011
  • DC traction power system is operated ungrounded so that minimize the stray current. Because the stray current is still present, a rail potential is increased. The ground faults in the DC railway systems are usually detected by a potential relay(64P). Moreover, if the rail potential goes high in the ordinary operating state because of the traction load, the potential relay would be maloperated. A presented protective relaying algorithm that can identify exactly the faulted region and can distinguish a ground fault from the potential rising of the rail is presented in this paper. This paper presents simulation technique that is very similar to the real operation situation using PSCAD/EMTDC.

Outage Analysis of OFDM-Based Dual-hop Multi-Relay Systems with Best Relay Selection (최선 릴레이 선택을 적용한 OFDM 기반 이중-홉 다중 릴레이 시스템의 아웃티지 성능 분석)

  • Park, Jae-Cheol;Wang, Jin-Soo;Lee, Ji-Hye;Kim, Yun-Hee
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.5C
    • /
    • pp.487-494
    • /
    • 2010
  • This paper presents an OFDM-based dual-hop multi-relay system with best relay selection maximizing the mutual information. For the system either with decode-and-forward (DF) relays or with amplify-and-forward (AF) relays, we derive a lower-bound on the outage probability and the diversity order achievable in frequency selective fading channels and provide the outage capacity from simulation. Performance evaluation shows that both DF and AF provide the same diversity order as in the lower-bound but DF of which the outage probability is much closer to the lower-bound provides a better outage capacity than AF. It is also observed that the SNR gain of DF over AF gets larger as either the number of resolvable multipaths or the number of relay candidates increases, which makes DF relaying more favorable to the OFDM-based multi-relay system.