The Journal of the Institute of Internet, Broadcasting and Communication
/
v.13
no.5
/
pp.71-76
/
2013
This paper considers an approach of secondary user selection method in cooperative spectrum sensing, which two users with the best SNR in sensing channel and in reporting channel, respectively, are selected to cooperate with each other in the spectrum sensing. The sensing results reported by two users are then combined to detect PU signal operation. A comparison between this proposed method with conventional selection technique in which only the user having the best sensing channel SNR is selected shows that the proposed method outperforms. We make an assumption that sensing channels experience identical, independent distributed (i.i.d) Rayleigh fading and the reporting channels are invariant and non-identical. Simulation results are derived for demonstration.
This research was for the analysis of gas industries and 12 Hazard evaluation techniques for the industries, and present the selection guideline of the techniques using 6 factors affecting them. 4 indexes & consequences of incidents into 8 characteristics. Also, combining the indexes with the selection procedure in flowchart format could reduce improper techniques and present alternatives. Also, it is used as guidelines to get safety improvement plan to gas companies.
KSII Transactions on Internet and Information Systems (TIIS)
/
v.13
no.2
/
pp.771-789
/
2019
Text detection has been a popular research topic in the field of computer vision. It is difficult for prevalent text detection algorithms to avoid the dependence on datasets. To overcome this problem, we proposed a novel unsupervised text detection algorithm inspired by bootstrap learning. Firstly, the text candidate in a novel form of superpixel is proposed to improve the text recall rate by image segmentation. Secondly, we propose a unique text sample selection model (TSSM) to extract text samples from the current image and eliminate database dependency. Specifically, to improve the precision of samples, we combine maximally stable extremal regions (MSERs) and the saliency map to generate sample reference maps with a double threshold scheme. Finally, a multiple kernel boosting method is developed to generate a strong text classifier by combining multiple single kernel SVMs based on the samples selected from TSSM. Experimental results on standard datasets demonstrate that our text detection method is robust to complex backgrounds and multilingual text and shows stable performance on different standard datasets.
The purpose of this study is to improve the performance of the artificial neural network system for facial image analysis through the image landmark selection technique. For landmark selection, a CNN-based multi-layer ResNet model for classification of facial image age is required. From the configured ResNet model, a heat map that detects the change of the output node according to the change of the input node is extracted. By combining a plurality of extracted heat maps, facial landmarks related to age classification prediction are created. The importance of each pixel location can be analyzed through facial landmarks. In addition, by removing the pixels with low weights, a significant amount of input data can be reduced.
This study was carried out to obtain the basic information for breeding cold-tolerant rice varieties with high yield-productivity through wide crosses between indica and japonica rice. Genetic analysis was conducted using 55 F$_1$s obtained from half-diallel crosses among eleven cultivars of various origin including indica and japonica rice. Screening for cold tolerance was done with cold-water irrigation after transplanting until ripening stage. Both general combining ability (GCA) and specific combining ability (SCA) effects were highly significant in all characters associated with dry matter accumulation at 30 and 50days after cold-water irrigation (DAC). The variance of GCA was much larger than that of SCA in plant height, shoot dry weight per plant (DWP), crop growth rate (CGR) and cold-water response index (CRI) of these characters except CRI of shoot dry weight per plant. The DWP, CGR and CRI of these characters of Gaochan 102, Tong88-7 and TR22183 were markedly higher than those of the others. GCA effects of these varieties on DWP, CGR and their CRI were also higher than those of the others, indicating that they are useful as promising parents for breeding cold-tolerant varieties. Analysis of genetic parameters for 11$\times$11 half-diallel F$_1$s revealed that inter-locus gene interaction were concerned in the expression of plant height at 50 DAC, CRI of DWP at 50 DAC, and CRI of CGR, and that intra-locus gene interaction for plant height and the other characters were partial dominance and over-dominance, respectively. Narrow-sense heritability (h$^2$$_{N}$) was the highest in plant height as 0.729, and the lowest in CRI of DWP at 30 DAC as 0.048, suggesting that selection for cold tolerance will be quite effective in case that the selection criterion is the performance itself.f.
In past few years, high-throughput sequencing, big-data generation, cloud computing, and computational biology are revolutionary. RNA sequencing is emerging as an attractive alternative to DNA microarrays. And the methods for constructing Gene Regulatory Network (GRN) from RNA-Seq are extremely lacking and urgently required. Because GRN has obtained substantial observation from genomics and bioinformatics, an elementary requirement of the GRN has been to maximize distinguishable genes. Despite of RNA sequencing techniques to generate a big amount of data, there are few computational methods to exploit the huge amount of the big data. Therefore, we have suggested a novel gene selection algorithm combining Support Vector Machines and Intensity-dependent normalization, which uses log differential expression ratio in RNAseq. It is an extended variation of support vector machine recursive feature elimination (SVM-RFE) algorithm. This algorithm accomplishes minimum relevancy with subsets of Big-Data, such as NCBI-GEO. The proposed algorithm was compared to the existing one which uses gene expression profiling DNA microarrays. It finds that the proposed algorithm have provided as convenient and quick method than previous because it uses all functions in R package and have more improvement with regard to the classification accuracy based on gene ontology and time consuming in terms of Big-Data. The comparison was performed based on the number of genes selected in RNAseq Big-Data.
Kim, Kyoo-Hyun;Knag, Seoung-Won;Chang, Kyung-Hi;Jeong, Byung-Jang;Chung, Hyun-Kyu
The Journal of Korean Institute of Communications and Information Sciences
/
v.32
no.6A
/
pp.519-536
/
2007
In this paper, we combine the Hybrid-Automatic Repeat reQuest (HARQ) algorithm with joint Tx and Rx antenna selection based on the reliability of the individual antennas links. The cyclic redundancy check (CRC) is applied on the data before being encoded using the Turbo encoder. In the receiver the CRC is used to detect errors of each antenna stream and to decide whether a retransmission is required or not. The receiver feeds back the transmitter with the Tx antennas ordering and the acknowledgement of each antenna (ACK or NACK). If the number of ACK antennas is higher than the NACK antennas, then the retransmission takes place from the ACK antennas using the Chase Combining (CC). If the number of the NACK antennas is higher than the ACK antennas then the ACK antennas are used to retransmit the data streams using the CC algorithm and additional NACK antennas are used to retransmit the remaining streams using Incremental Redundancy (IR, i.e. the encoder rate is reduced). Furthermore, the HARQ is used with the I-BLAST (Iterative-BLAST) which grantees a high transmission rate.
Journal of the Korea Institute of Information and Communication Engineering
/
v.22
no.7
/
pp.943-948
/
2018
In this paper, we propose a hybrid approach of combining $A^*$ and Genetic algorithm in the path search problem. In $A^*$, the cost from a start node to the intermediate node is optimized in principle but the path from that intermediate node to the goal node is generated and tested based on the cumulated cost and the next node in a priority queue is chosen to be tested. In that process, we adopt the genetic algorithm principle in that the group of nodes to generate the next node from an intermediate node is tested by its fitness function. Top two nodes are selected to use crossover or mutation operation to generate the next generation. If generated nodes are qualified, those nodes are inserted to the priority queue. The proposed method is compared with the original sequential selection and the random selection of the next searching path in $A^*$ algorithm and the result verifies the superiority of the proposed method.
Relationships of breeding values of sires for first lactation milk yield with pedigree information or indices were examined to identify the optimal criteria of selecting young dairy bulls for future use in artificial insemination (AI). Records of performance data on 1087 crossbred daughters (Holstein - Friesian, Jersey and Brown Swiss with Hariana) of 147 sires, generated at Livestock Production Research (Cattle and Buffaloes) Farm, IVRI, Izatnagar, U.P., during 1972 - 1995 were used to obtain the estimates of sire's breeding values (EBV) using the Best Linear Unbiased Prediction Procedures. The correlations between young bull's EBV and the dam's first lactation milk yield was non-significantly different from zero. However, the young bull's EBV was negatively and significantly related (r = - 0.275 ; P < 0.05) to the dam's best lactation milk yield, suggesting that the selection of young dairy bulls from high yielding elite dams is not a suitable criteria for genetic improvement. The correlations of sire's and paternal grandsire's EBV's with young bull's EBV were high and positive (0.532, 0.844; P < 0.01). The maternal grandsire's EBV was positively but non-significantly related to grandson's EBV. The pedigree index incorporating dam's milk records and sire's EBV's showed a negative and non-significant correlation with young bull's EBV. However, the correlation of a pedigree index $(I_3)$ combining information on sire's and paternal grand-sire's EBV's with young bull's EBV's was considerably high and positive (0.797; P < 0.01). The regression coefficients of young bull's EBV on pedigree index $I_3$, was higher than those on other pedigree information. These results revealed that there was no advantage in basing selection on dam's performance or maternal grand-sire's EBV and that sire's and paternal grandsire's EBV's were reliable pedigree information for selection of young dairy bulls for future use in AI.
The good classifier ensemble should have a high complementarity among classifiers in order to produce a high recognition rate and its size is small in order to be efficient. This paper proposes a classifier ensemble selection algorithm with coarse-to-fine stages. for the algorithm to be successful, the original classifier pool should be sufficiently diverse. This paper produces a large classifier pool by combining several different classification algorithms and lots of feature subsets. The aim of the coarse selection is to reduce the size of classifier pool with little sacrifice of recognition performance. The fine selection finds near-optimal ensemble using genetic algorithms. A hybrid genetic algorithm with improved searching capability is also proposed. The experimentation uses the worldwide handwritten numeral databases. The results showed that the proposed algorithm is superior to the conventional ones.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.