• Title/Summary/Keyword: selectable marker

Search Result 74, Processing Time 0.021 seconds

An efficient protocol for the production of transgenic Alstroemeria plants via particle bombardment

  • Kim, Jong Bo
    • Journal of Plant Biotechnology
    • /
    • v.47 no.1
    • /
    • pp.66-72
    • /
    • 2020
  • Alstroemeria plants were transformed by using an improved particle-gun-mediated transformation system. Friable embryogenic callus (FEC) induced from the leaves with axil tissues of Alstroemeria plant was used as the target tissue. Also, FEC was transformed with the bar gene was used as a selectable marker. In the case of plasmid pAHC25, 7.5% of the twice-bombarded FEC clumps showed blue foci, whereas the clumps with single bombardment showed only 2.3%. Additionally, a 90° rotation with double bombardment led to a higher frequency (6 times) of luciferase gene expression in PBL9780 than the control treatment. After 8 weeks of bombardment, more than 60 independent transgenic lines were obtained for pAHC25 and nearly 150 independent transgenic lines were obtained for PBL9780, all of which were resistant to PPT and demonstrated either GUS or luciferase activity. Regarding effect of osmotic treatment (0.2 M mannitol) with 7 different periods, the highest transient gene expression was obtained in 8 h before and 16 h after transformation in both pAHC25 and PBL9780. Compared with the control, at least three times more GUS foci and photons were observed in this treatment. With respect to different combinations of mannitol and sorbitol with 8 h before and 16 h after transformation, high numbers of transient and stable transgene expressions were observed in both 0.2 M mannitol and 0.2 M sorbitol used in the osmotic pre-culture. This combination showed the highest transformation efficiency in both pAHC25 (8.5%) and PBL9780 (14.5%). In the control treatment, only 10% of the FEC clumps produced somatic embryos. However, by using 0.2 M mannitol and 0.2 M sorbitol, the frequency of somatic embryos increased to 36.5% (pAHC25) and 22.9% (PBL9780). Of the somatic embryos produced, at least 60% germinated. Approximately 100 somatic embryos from these 210 independent transgenic lines from 2 plasmids developed into shoots, which were then transferred to the greenhouse. PCR analysis confirmed the presence of the bar gene. This is the report on the production of transgenic Alstroemeria plants by using particle bombardment with a high efficiency, thereby providing a new alternative for the transferring of gene of interests in Alstroemeria in the breeding program in the future.

Efficient Transformation Method of Soybean Using Meristematic Tissues of Germinating Seeds (발아종자의 분열조직을 이용한 효율적인 콩 형질전환 방법)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Sohn, Soo-In;Shin, Dong-Bum;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.40 no.3
    • /
    • pp.278-285
    • /
    • 2008
  • An efficient transformation method for soybean [Glycine max (L.) Merr.] using meristematic tissues of germinating seeds has been established. The embryonic axes were excised from germinating seeds of Korean soybean cultivar, Iksannamulkong and 0.5-2 cm long segment containing meristematic tissues were prepared by cutting hypocotyl region. The explants were inoculated with Agrobacterium tumefaciens strain LBA4404 harboring a binary vector with the bar gene as a selectable marker gene and a ${\beta}-glucuronidase$ (GUSINT) reporter gene, and then co-cultured for 7 days on co-cultivation medium (CCM). The meristematic tissues were cultured on shoot induction medium (SIMP6) supplemented with 0.4 mg/l $N_6-benzylaminopurine$ (BAP) and 0.1 mg/l indolebutyric acid (IBA) in the presence of 6 mg/l L-phosphinotricin (PPT) for 2 weeks and the surviving explants were transferred to shoot elongation medium (SEMP6). Transformation was confirmed by Southern blot analysis and the transformation efficiencies ranged from 1.48 to 2.07%. The new modified transformation method was successfully implemented for obtaining several transgenic lines with SMV-CP gene. It is expected that this method could efficiently be used for the transformation of recalcitrant soybean cultivars.

The Effects of Co-cultivation Medium and Culture Conditions on Rice Transformation Efficiency (공동배양과정의 배지조성과 배양조건이 벼 형질전환효율에 미치는 영향)

  • Kim, Yul-Ho;Park, Hyang-Mi;Choi, Man-Soo;Yun, Hong-Tai;Choi, Im-Soo;Shin, Dong-Bum;Kim, Chung-Kon;Lee, Jang-Yong
    • Korean Journal of Breeding Science
    • /
    • v.41 no.3
    • /
    • pp.252-260
    • /
    • 2009
  • Rice is the most important cereal crop not only in supplying the basic staple food for more than half of the world's population but also as a model plant for functional genomic studies of monocotyledons. Although rice transformation method using A. tumefaciens has already been widely used to generate transgenic plants, the transformation rate is still low in most Korean elite cultivars. We made several modifications of the standard protocol especially in the co-cultivation step to improve the efficiency of the rice transformation. The co-culture medium was modified by the addition of three antioxidant compounds (10.5 mg/L L-cysteine, 1 mM sodium thiosulfate, 1 mM dithiothreitol) and of Agrobacterium growth-inhibiting agent (5 mg/L silver nitrate). Co-cultivation temperature ($23.5^{\circ}C$ for 1 day, $26.5^{\circ}C$ for 6 days) and duration (7 days) were also changed. The plasmid of pMJC-GB-GUS carrying the GUS reporter gene and the bar gene as the selectable marker was used to evaluate the efficiency of the transformation. After co-cultivation, a high level of GUS gene expression was observed in calli treated with the modified method. It is likely that those newly added compounds helped to minimize the damage due to oxidative bursts during plant cell-Agrobacterium interaction and to prevent necrosis of rice cells. And the transformation rate under the modified method was also remarkably increased approximately 8-fold in Heungnambyeo and 2-fold in Ilmibyeo as compared to the corresponding standard method. Furthermore, we could produce the transgenic plants stably from Ilpumbyeo which is a high-quality rice but its transformation rate is extremely low. Transformation and the copy number of transgenes were confirmed by PCR, bar strip and Southern blot analysis. The improved method would attribute reducing the effort and the time required to produce a large number of transgenic rice plants.

High-efficiency development of herbicide-resistant transgenic lilies via an Agrobacterium-mediated transformation system (고효율의 아그로박테리움 형질전환법을 이용한 제초제저항성 나리 식물체 개발)

  • Jong Bo Kim
    • Journal of Plant Biotechnology
    • /
    • v.50
    • /
    • pp.56-62
    • /
    • 2023
  • Transgenic lilies have been obtained using Agrobacterium tumefaciens (AGL1) with the plant scale explants, followed by DL-phosphinothricin (PPT) selection. In this study, scales of lily plants cv. "red flame" were transformed with the pCAMBIA3301 vector containing the gus gene as a reporter and the blpR gene as a selectable marker, as well as a gene of interest showing herbicide tolerance, both driven by the CaMV 35S promoter. Using a 20-minute infection time and a 5-day cultivation period, factors that optimized and demonstrated a high transformation efficiency were achieved. With these conditions, approximately 22-27% efficiency was observed for Agrobacterium-mediated transformation in lilies. After transformation with Agrobacterium, scales of lilies were transferred to MS medium without selective agents for 2 weeks. They were then placed on selection MS medium containing 5 mg/L PPT for a month of further selection and then cultured for another 4-8 weeks with a 4-week subculture regime on the same selection medium. PPT-resistant scales with shoots were successfully rooted and regenerated into plantlets after transferring into hormone-free MS medium. Also, most survived putatively transformed plantlets indicated the presence of the blpR gene by PCR analysis and showed a blue color indicating expression of the gus gene. In conclusion, when 100 scales of lily cv. "red flame" are transformed with Agrobacterium, approximately 22-27 transgenic plantlets can be produced following an optimized protocol. Therefore, this protocol can contribute to the lily breeding program in the future.