• 제목/요약/키워드: seismic-protection

검색결과 154건 처리시간 0.028초

수계소화설비 배관계통의 내진 설계기준에 대한 연구 (A Study on Seismic Design in the Piping of Water-Based Fire Protection System)

  • 허만성
    • 한국화재소방학회:학술대회논문집
    • /
    • 한국화재소방학회 2011년도 추계학술논문발표회 논문집
    • /
    • pp.87-90
    • /
    • 2011
  • 본 연구는 수계소화설비 배관계통의 지진시 피해실태 및 내진 성능에 대한 자료를 조사 분석하여 배관계통의 부위별 내진 설계 요구조건을 연구하였다. 수계소화설비 배관계통에 요구되는 내진안전성은 건축물을 사용할 수 있는 상황에서는 기능유지 또는 다소의 손상이 있다고 하더라도 용이하게 복구가 가능한 시스템이어야 한다. 스프링클러설비는 대규모 지진 직후에 있어서도 손상되지 않고 그 기능이 유지되는 것이 요구된다. 수계소화설비 배관계통은 지진에 의한 건축물의 변위 및 배관 본체 등의 과대한 흔들림에 의해 손상을 방지하기위해 건축물의 익스펜션조인트부를 통과하는 배관, 건축물 도입부의 배관, 설비기기와 배관 등의 이음부, 횡주배관, 입상배관, 기기류 등에 내진조치가 요구된다.

  • PDF

지진하중을 받는 사장교를 위한 LRB-기반 복합 기초격리 시스템 (LRB-based Hybrid Base Isolation Systems for Seismically Excited Cable-Stayed Bridges)

  • 정형조;박규식;이헌재;이인원
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2003년도 가을 학술발표회 논문집
    • /
    • pp.527-534
    • /
    • 2003
  • This paper presents the LRB-based hybrid base isolation systems employing additional active/semiactive control devices for seismic protection of cable-stayed bridges by examining the ASCE first generation benchmark problem for a cable-stayed bridge. In this study, ideal hydraulic actuators (HAs) and ideal magnetorheological dampers (MRDs) are considered as additional active and semiactive control devices, respectively. Numerical simulation results show that all the hybrid base isolation systems are effective in reducing the structural responses of the benchmark cable-stayed bridge under the historical earthquakes considered. The simulation results also demonstrate that the hybrid base isolation system employing semiactive MRBs is robust to the stiffness uncertainty of the structure, while the hybrid system with active HAs is not. Therefore, the LRB-based hybrid base isolation system employing MRDs could be more appropriate in real applications for full-scale civil infrastructures.

  • PDF

Characterization and shaking table tests of multiple trench friction pendulum system with numerous intermediate sliding plates

  • Tsai, C.S.;Lin, Yung-Chang
    • Structural Engineering and Mechanics
    • /
    • 제40권2호
    • /
    • pp.167-190
    • /
    • 2011
  • In order to upgrade the seismic resistibility of structures and enhance the functionality of an isolator, a new base isolator called the multiple trench friction pendulum system (MTFPS) is proposed in this study. The proposed MTFPS isolator is composed of a trench concave surface and several intermediate sliding plates in two orthogonal directions. Mathematical formulations have been derived to examine the characteristics of the proposed MTFPS isolator possessing numerous intermediate sliding plates. By means of mathematical formulations which have been validated by experimental results of bidirectional ground shaking, it can be inferred that the natural period and damping effect of the MTFPS isolator with several intermediate sliding plates can be altered continually and controllably during earthquakes. Furthermore, results obtained from the component and shaking table tests demonstrate that the proposed isolator provides good protection to structures for prevention of damage from strong earthquakes.

Overview of the development of smart base isolation system featuring magnetorheological elastomer

  • Li, Yancheng;Li, Jianchun
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.37-52
    • /
    • 2019
  • Despite its success and wide application, base isolation system has been challenged for its passive nature, i.e., incapable of working with versatile external loadings. This is particularly exaggerated during near-source earthquakes and earthquakes with dominate low-frequency components. To address this issue, many efforts have been explored, including active base isolation system and hybrid base isolation system (with added controllable damping). Active base isolation system requires extra energy input which is not economical and the power supply may not be available during earthquakes. Although with tunable energy dissipation ability, hybrid base isolation systems are not able to alter its fundamental natural frequency to cope with varying external loadings. This paper reports an overview of new adventure with aim to develop adaptive base isolation system with controllable stiffness (thus adaptive natural frequency). With assistance of the feedback control system and the use of smart material technology, the proposed smart base isolation system is able to realize real-time decoupling of external loading and hence provides effective seismic protection against different types of earthquakes.

The engineering merit of the "Effective Period" of bilinear isolation systems

  • Makris, Nicos;Kampas, Georgios
    • Earthquakes and Structures
    • /
    • 제4권4호
    • /
    • pp.397-428
    • /
    • 2013
  • This paper examines whether the "effective period" of bilinear isolation systems, as defined invariably in most current design codes, expresses in reality the period of vibration that appears in the horizontal axis of the design response spectrum. Starting with the free vibration response, the study proceeds with a comprehensive parametric analysis of the forced vibration response of a wide collection of bilinear isolation systems subjected to pulse and seismic excitations. The study employs Fourier and Wavelet analysis together with a powerful time domain identification method for linear systems known as the Prediction Error Method. When the response history of the bilinear system exhibits a coherent oscillatory trace with a narrow frequency band as in the case of free vibration or forced vibration response from most pulselike excitations, the paper shows that the "effective period" = $T_{eff}$ of the bilinear isolation system is a dependable estimate of its vibration period; nevertheless, the period associated with the second slope of the bilinear system = $T_2$ is an even better approximation regardless the value of the dimensionless strength,$Q/(K_2u_y)=1/{\alpha}-1$, of the system. As the frequency content of the excitation widens and the intensity of the acceleration response history fluctuates more randomly, the paper reveals that the computed vibration period of the systems exhibits appreciably scattering from the computed mean value. This suggests that for several earthquake excitations the mild nonlinearities of the bilinear isolation system dominate the response and the expectation of the design codes to identify a "linear" vibration period has a marginal engineering merit.

An innovative BRB with viscoelastic layers: performance evaluation and numerical simulation

  • Zhou, Ying;Gong, Shunming;Hu, Qing;Wu, Rili
    • Structural Monitoring and Maintenance
    • /
    • 제5권2호
    • /
    • pp.205-229
    • /
    • 2018
  • Energy induced by minor earthquake and micro vibration cannot be dissipated by traditional buckling-restrained braces (BRBs). To solve this problem, a new type of hybrid passive control device, named as VE-BRB, which is configured by a BRB with high-damping viscoelastic (VE) layers, is developed and studied. Theoretical analysis, performance tests, numerical simulation and case analysis are conducted to study the seismic behavior of VE-BRBs. The results indicate that the combination of hysteretic and damping devices lead to a multi-phased nature and good performance. VE-BRB's working state can be divided into three phases: before yielding of the steel core, VE layers provide sufficient damping ratio to mitigate minor vibrations; after yielding of the steel core, the steel's hysteretic deformations provide supplemental dissipative capacity for structures; after rupture of the steel core, VE layers are still able to work normally and provide multiple security assurance for structures. The simulation results agreed well with the experimental results, validating the finite element analysis method, constitutive models and the identified parameters. The comparison of the time history analysis on a 6-story frame with VE-BRBs and BRBs verified the advantages of VE-BRB for seismic protection of structures compared with traditional BRB. In general, VE-BRB had the potential to provide better control effect on structural displacement and shear in all stages than BRB as expected.

Seismic protection of the benchmark highway bridge with passive hybrid control system

  • Saha, Arijit;Saha, Purnachandra;Patro, Sanjaya Kumar
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.227-241
    • /
    • 2018
  • The present paper deals with the optimum performance of the passive hybrid control system for the benchmark highway bridge under the six earthquakes ground motion. The investigation is carried out on a simplified finite element model of the 91/5 highway overcrossing located in Southern California. A viscous fluid damper (known as VFD) or non-linear fluid viscous spring damper has been used as a passive supplement device associated with polynomial friction pendulum isolator (known as PFPI) to form a passive hybrid control system. A parametric study is considered to find out the optimum parameters of the PFPI system for the optimal response of the bridge. The effect of the velocity exponent of the VFD and non-linear FV spring damper on the response of the bridge is carried out by considering different values of velocity exponent. Further, the influences of damping coefficient and vibration period of the dampers are also examined on the response of the bridge. To study the effectiveness of the passive hybrid system on the response of the isolated bridge, it is compared with the corresponding PFPI isolated bridges. The investigation showed that passive supplement damper such as VFD or non-linear FV spring damper associated with PFPI system is significantly reducing the seismic response of the benchmark highway bridge. Further, it is also observed that non-linear FV spring damper hybrid system is a more promising strategy in reducing the response of the bridge compared to the VFD associated hybrid system.

퍼지관리제어기법을 이용한 스마트 면진 벤치마크 건물의 제어 (Control of Smart Base-isolated Benchmark Building using Fuzzy Supervisory Control)

  • 김현수
    • 한국지진공학회논문집
    • /
    • 제9권4호
    • /
    • pp.55-66
    • /
    • 2005
  • 본 논문에서는 스마트 면진장치를 효과적으로 제어하기 위하여 퍼지관리제어기를 개발하였고 그 효율성을 검토하였다. 이를 위하여 1세대 스마트 면진 벤치마크 건물을 이용하여 수치해석을 수행하였다. 대상 벤치마크 구조물은 부정형의 평면을 가지고 있는 8층 건물이고 탄성베어링과 MR 감쇠기로 이루어진 스마트 면진장치가 설치되어 있다. 본 논문에서는 다목적 유전자 알고리즘을 이용하여 원거리 지진과 근거리 지진에 대하여 각각 면진구조물을 효과적으로 제어할 수 있는 하위 퍼지제어기를 개발한다. 최적화과정에서는 구조물의 최대 및 RMS 가속도와 면진층 변위의 저감이 목적으로 사용된다. 벤지마크 건물에 지진하중이 가해지면 두 개의 하위 퍼지제어기에서는 각각 다른 명령전압이 제공되는데 이 명령전압들은 퍼지관리제어기의 추론과정에 기반하여 실시간으로 참여율이 조절되어 하나의 명령전압으로 조합된다. 수치해석을 통하여 제안된 퍼지관리제어기법을 사용함으로써 상부구조물의 응답과 면진층의 변위를 효과적으로 줄일 수 있음을 확인할 수 있다.

Seismic protection of smart base-isolated structures using negative stiffness device and regulated damping

  • Bahar, Arash;Salavati-Khoshghalb, Mohsen;Ejabati, Seyed Mehdi
    • Smart Structures and Systems
    • /
    • 제21권3호
    • /
    • pp.359-371
    • /
    • 2018
  • Strong seismic events commonly cause large drift and deformation, and functionality failures in the superstructures. One way to prevent functionality failures is to design structures which are ductile and flexible through yielding when subjected to strong ground excitations. By developing forces that assist motion as "negative stiffness forces", yielding can be achieved. In this paper, we adopt the weakening and damping method to achieve a new approach to reduce all of the structural responses by further adjusting damping phase. A semi-active control system is adopted to perform the experiments. In this adaptation, negative stiffness forces through certain devices are used in weakening phase to reduce structural strength. Magneto-rheological (MR) dampers are then added to preserve stability of the structure. To adjust the voltage in MR dampers, an inverse model is employed in the control system to command MR dampers and generate the desired control forces, where a velocity control algorithm produces initial required control force. An extensive numerical study is conducted to evaluate proposed methodology by using the smart base-isolated benchmark building. Totally, nine control systems are examined to study proposed strategy. Based on the numerical results of seven earthquakes, the use of proposed strategy not only reduces base displacements, base accelerations and base shear but also leads to reduction of accelerations and inter story drifts of the superstructure. Numerical results shows that the usage of inverse model produces the desired regulated damping, thus improving the stability of the structure.

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • 제24권1호
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.