• 제목/요약/키워드: seismic-performance

검색결과 3,015건 처리시간 0.027초

기초격리된 구조물에서 자기유동성 유체감쇠기의 면진성능에 관한 연구 (A Study on the Seismic Performance of MR Fluid Dampers in Base-Isolated Structures)

  • 이종세;도학용
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2002년도 추계 학술발표회 논문집
    • /
    • pp.371-378
    • /
    • 2002
  • The design concepts using vibration reduction techniques, or structural control, have been proposed recently to protect infrastructure against earthquakes. The magnetorheological(MR) fluid damper is one of the most promising new devices for structural vibration reduction because of its mechanical simplicity, high dynamic range, low power requirement, large force capacity and robustness. In this study, the seismic performance of MR devices are compared with that of NZ systems as an attempt to provide some data for improving seismic design techniques applied to structures. For nonlinear time domain analysis of a base isolation system, a six-story building model is considered as a numerical example. The ground acceleration data of El Centre 1940, Mexico City 1985 and Kobe 1995 earthquakes are used as seismic excitations. The results show that MR damper systems for outperform NZ systems in wide-ranging seismic excitations with respect to intensity and period characteristics.

  • PDF

국내 공동주택의 지진위험도 현황에 관한 연구 (The present state of earthquake hazard for the apartment structures in Korea)

  • 김현진;박태원;정란
    • 건설안전기술
    • /
    • 통권49호
    • /
    • pp.92-102
    • /
    • 2009
  • Earthquake is one of the hazard so hard because it is difficult predicted occurred time, scale and characters. Due to a recent Sichuan earthquake in China with a magnitude of 7.8, it is worried about having a major earthquake in Korea peninsula in near future. The earthquake in Kobe, Japan showed that the damages were concentrated on the buildings which were not considered to be protected from the earthquakes. In this study, apartment structures in Korea analyze about earthquake hazard and evaluate seismic performance. Through the this study we have notice of earthquake hazard for apartment structures which live a lot of population of Korea and suppose necessary for seismic retrofit.

  • PDF

Seismic assessment of thin steel plate shear walls with outrigger system

  • Fathy, Ebtsam
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.267-282
    • /
    • 2020
  • The seismic performance and failure modes of the dual system of moment resisting frames and thin steel plate shear walls (TSPSWs) without and with one or two outrigger trusses are studied in this paper. These structural systems were utilized to resist vertical and lateral loads of 40-storey buildings. Detailed Finite element models associated with nonlinear time history analyses were used to examine seismic capacity and plastic mechanism of the buildings. The analyses were performed under increased levels of earthquake intensities. The models with one and two outriggers showed good performance during the maximum considered earthquake (MCE), while the stress of TSPSWs in the model without outrigger reached its ultimate value under this earthquake. The best seismic capacity was in favour of the model with two outriggers, where it is found that increasing the number of outriggers not only gives more reduction in lateral displacement but also reduces stress concentration on thin steel plate shear walls at outrigger floors, which caused the early failure of TSPSWs in model with one outrigger.

국내 공동주택의 지진위험도 현황에 관한 연구 (The Present State of Earthquake Hazard for the Apartment Structures in Korea)

  • 김현진;박태원;정란
    • 한국안전학회지
    • /
    • 제23권6호
    • /
    • pp.100-107
    • /
    • 2008
  • Earthquake is one of the hazard so hard because it is difficult predicted occurred time, scale and characters. Due to a recent Sichuan earthquake in China with a magnitude of 7.8, it is worried about having a major earthquake in Korea peninsula in near future. The earthquake in Kobe, Japan showed that the damages were concentrated on the buildings which were not considered to be protected from the earthquakes. In this study, apartment structures in Korea analyze about earthquake hazard and evaluate seismic performance. Through the this study we have notice of earthquake hazard for apartment structures which live a lot of population of Korea and suppose necessary for seismic retrofit.

Effect of semi-rigid connections in improvement of seismic performance of steel moment-resisting frames

  • Feizi, M. Gholipour;Mojtahedi, A.;Nourani, V.
    • Steel and Composite Structures
    • /
    • 제19권2호
    • /
    • pp.467-484
    • /
    • 2015
  • Seismic performances of dual steel moment-resisting frames with mixed use of rigid and semi-rigid connections were investigated to control of the base shear, story drifts and the ductility demand of the elements. To this end, nonlinear seismic responses of three groups of frames with three, eight and fifteen story were evaluated. These frames with rigid, semi-rigid and combined configuration of rigid and semi-rigid connections were analyzed under five earthquake records and their responses were compared in ultimate limit state of rigid frame. This study showed that in all frames, it could be found a state of semi-rigidity and connections configuration which behaved better than rigid frame, with consideration of the base shear and story drifts criterion. Finally, some criteria were suggested to locate the best place of the semi-rigid connections for improvement of the seismic performance of steel moment-resisting frames.

Study on Integrity Assessment of Pile Foundation Based on Seismic Observation Records

  • KASHIWA, Hisatoshi
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.369-376
    • /
    • 2020
  • Given the importance of quickly recovering livelihoods and economic activity after an earthquake, the seismic performance of the pile foundation is becoming more critical than before. In order to promote seismic retrofit of the pile foundations, it is necessary to develop a method for evaluating the seismic performance of the pile foundation based on the experimental data. In this paper, we focus on the building that was suffered severe damage to the pile foundation, conduct simulation analyses of the building, and report the results of evaluating the dynamic characteristics when piles are damaged using a system identification method. As a result, an analysis model that can accurately simulate the behavior of the damaged building during an earthquake was constructed, and it was shown that the system identification method could extract dynamic characteristics that may damage piles.

Experimental investigation on in-plane seismic behavior of multistory opening masonry walls with two different failure modes

  • Xin, Ren;Bi, Dengshan;Huang, Wei
    • Structural Engineering and Mechanics
    • /
    • 제84권4호
    • /
    • pp.479-488
    • /
    • 2022
  • Aiming to examine different failure patterns in multistory URM walls, two 1/3 scaled three-story and three-bay URM models were designed for the quasi-static loading tests to contrastively investigate the failure processes and characteristics of the multistory URM walls. Two different failure responses were observed with special attention paid to the behavior of spandrel-failure mode. By evaluating the seismic performance and deformation behavior of two test walls, it is demonstrated that spandrels, that haven't been properly designed in some codes, are of great significance in the failure of entire URM walls. Additionally, compared with pier-failure mode, spandrel-failure for multistory URM building is more reasonable and advisable as its effectively participation in energy dissipation and its efficiently improvement on seismic capacity and deformation in the overall structure. Furthermore, the experimental results are beneficial to improve seismic design and optimize reinforcement method of URM buildings.

Assessment of seismic design coefficients for composite special moment frames with reinforced concrete columns and steel beams: Evaluation of code recommendations

  • Elmira Tavasoli Yousef Abadi;Mohammad T. Kazemi
    • Steel and Composite Structures
    • /
    • 제50권6호
    • /
    • pp.643-658
    • /
    • 2024
  • The main aim of this study is to quantify the code seismic design coefficients of the RCS system, which consisted of reinforced concrete columns and steel beams, based on the FEMA P-695 methodology. The underlying intention is to evaluate the seismic performance of the RCS system at the system level rather than the connection level. A set of 24 archetype buildings with a various number of stories, beam span lengths, gravity load levels, and seismic load levels are selected and designed based on the prevailing code requirements. Nonlinear analytical models are developed and validated by experimental tests. The pushover and response history dynamic analyses are conducted to evaluate the required data in the performance quantification process. The results show that the design coefficients suggested by the code are acceptable. However, the level of conservatism is very high. Thus, it is possible to use a larger R-factor in the design process or make some relaxations in the design requirements related to this structural system.

Seismic performance of a fiber-reinforced plastic cable-stayed bridge

  • Hodhod, Osama A.;Khalifa, Magdi A.
    • Structural Engineering and Mechanics
    • /
    • 제5권4호
    • /
    • pp.399-414
    • /
    • 1997
  • This paper presents an investigation into the seismic response characteristics of a proposed ligh-weight pedestrian cable-stayed bridge made entirely from Glass Fiber Reinforced Plastics(GFRP). The study employs three dimensional finite element models to study and compare the dynamic characteristics and the seismic response of the GFRP bridge to a conventional Steel-Concrete (SC) cable-stayed bridge alternative. The two bridges were subjected to three synthetic earthquakes that differ in the frequency content characteristics. The performance of the GFRP bridge was compared to that of the SC bridge by normalizing the live load and the seismic internal forces with respect to the dead load internal forces. The normalized seismically induced internal forces were compared to the normalized live load internal forces for each design alternative. The study shows that the design alternatives have different dynamic characteristics. The light GFRP alternative has more flexible deck motion in the lateral direction than the heavier SC alternative. While the SC alternative has more vertical deck modes than the GFRP alternative, it has less lateral deck modes than the GFRP alternative in the studied frequency range. The GFRP towers are more flexible in the lateral direction than the SC towers. The GFRP bridge tower attracted less normalized base shear force than the SC bridge towers. However, earthquakes, with peak acceleration of only 0.1 g, and with a variety of frequency content could induce high enough seismic internal forces at the tower bases of the GFRP cable-stayed bridge to govern the structural design of such bridge. Careful seismic analysis, design, and detailing of the tower connections are required to achieve satisfactory seismic performance of GFRP long span bridges.

운영 중인 도로 터널의 내진 성능 평가 (Evaluation of seismic performance of road tunnels in operation)

  • 안재광;박두희;김동규;김광염
    • 한국터널지하공간학회 논문집
    • /
    • 제15권2호
    • /
    • pp.69-80
    • /
    • 2013
  • 본 연구에서는 터널에 대한 내진설계 기준이 처음으로 제정된 1999년 이전에 설계된 현재 운영중인 도로 터널의 지진에 대한 성능을 평가하였다. 이를 위하여 1999년 이전에 설계된 도로 터널 자료를 조사하였으며 이중에서 가장 지진에 취약할 것으로 예상되는 대표 단면을 선정하여 이들에 대한 정밀한 안전성 평가를 수행하였다. 사용된 해석방법은 응답변위법과 동적해석이며 모두 유한차분해석 프로그램을 이용하였다. 응답변위법은 전체영역과 축소된 해석 영역에 대한 해석을 수행하였으며 동적해석은 비선형 해석을 수행하였다. 해석 결과, 축소된 해석영역에 대한 응답변위법과 동적해석의 결과가 매우 유사한 것으로 나타났으며 내진설계가 적용되지 않은 터널들도 재현주기 1000년 지진에 대해서는 안전하며 추가적인 보강은 불필요한 것으로 나타났다.