• Title/Summary/Keyword: seismic-performance

Search Result 3,015, Processing Time 0.034 seconds

Effects of near-fault records characteristics on seismic performance of eccentrically braced frames

  • Eskandari, Reyhaneh;Vafaei, Davoud
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.855-870
    • /
    • 2015
  • In this paper the effects of fling-step and forward-directivity on the seismic performance of steel eccentrically braced frames (EBFs) are addressed. Four EBFs with various numbers of stories (4-, 8-, 12- and 15-story) were designed for an area with high seismic hazard. Fourteen near-fault ground motions including seven with forward-directivity and seven with fling-step effects are selected to carry out nonlinear time history (NTH) analyses of the frames. Furthermore, seven more far-field records were selected for comparison. Findings from the study reveal that the median maximum links rotation of the frames subjected to three set of ground motions are in acceptable range and the links completely satisfy the requirement stated in FEMA 356 for LS performance level. The arrival of the velocity pulse in a near-fault record causes few significant plastic deformations, while many reversed inelastic cycles result in low-cycle fatigue damage in far-fault records. Near-fault records in some cases are more destructive and the results of these records are so dispersed, especially the records having fling-step effects.

A computational platform for seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars

  • Kim, T.H.;Park, J.G.;Kim, Y.J.;Shin, H.M.
    • Computers and Concrete
    • /
    • v.5 no.2
    • /
    • pp.135-154
    • /
    • 2008
  • This paper presents a nonlinear finite element analysis procedure for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars. A computer program named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology) is used to analyze reinforced concrete structures; this program was also used in our study. Tensile, compressive and shear models of cracked concrete and models of reinforcing and prestressing steel were used account for material nonlinearity of reinforced concrete. The smeared crack approach was incorporated. To represent the interaction between unbonded reinforcing or prestressing bar and concrete, an unbonded reinforcing or prestressing bar element based on the finite element method was developed in this study. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge piers with unbonded reinforcing or prestressing bars is verified by comparison of its results with reliable experimental results.

Evaluation on Seismic Performance of Existing Frame retrofitted with RC CIP Infill Walls (기존 골조의 내진성능 향상을 위한 철근콘크리트 현장타설 끼움벽의 보강성능 평가)

  • Kim, Sun-Woo;Yun, Hyun-Do;Kim, Yun-Su;Ji, Sang-Kyu
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.53-56
    • /
    • 2008
  • A reinforced concrete (RC) cast-in-place (CIP) infill wall retrofitting method may provide an improved seismic performance and economical efficiency for the non-ductile rahmen structures. In this study, four one story-one bay non-ductile frame were constructed and retrofitted with CIP infill wall to evaluate seismic performance of CIP infill wall-frame. From the test results, infill wall-frame exhibited a marked increase in shear strength compared to non-ductile RC frame specimen. But the ductility and story-drift at maximum load were decreased when shear strength of infill wall larger than that of existing RC frame. Therefore, it is confirmed that adequate reinforcement detail is required to assure sufficient seismic performance.

  • PDF

Experimental Evaluation for Seismic Performance of RC Bridge Piers with FRP Confinement (FRP 횡보강근을 이용한 RC 교각의 내진성능 평가 실험)

  • 정영수;박진영;박창규;서진원
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.377-384
    • /
    • 2003
  • Recently, there are much concerns about new and innovative transverse materials which could be used instead of conventional transverse steel in reinforced concrete bridge piers. FRP materials could be substituted for conventional transverse steel because of their sufficient strength, light weight, easy fabrication, and useful applicability to any shapes of pier sections, such as rectangular or circular sections. The objective of this research is to evaluate the seismic performance of reinforced concrete bridge pier specimens with FRP transverse reinforcement by means of the Quasi-Static test. In the first task, test columns were made using FRP rope, but these specimens appeared to fail at low displacement ductility levels due to insufficient confinement of strand extension itself. Therefore, the second task was to evaluate the seismic performance of test specimens transversely confined with FRP band. Although FRP banded specimens showed lower seismic performance than the specimen with spiral reinforcing steel, it satisfied with the response modification factor, 3, required for the single column of Korea bridge roadway design code. It was concluded that FRP band could be efficiently substituted for conventional reinforcing steel.

  • PDF

The effect of short columns on the performance of existing buildings

  • Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.46 no.4
    • /
    • pp.505-518
    • /
    • 2013
  • In this study, the seismic performance of a residential building which was damaged in the 1992 Erzincan (Turkey) Earthquake (Ms = 6.8) is performed. Damages on columns due to short columns are estimated analytically implementing the shear hinges and results are compared with the observed damages on the building after the earthquake. In seismic performance evaluation, a deformation based approach is adopted, whereby the structural behavior under external and seismic loads is evaluated. Furthermore, the effects of short columns formed by band windows in basement floors are investigated analytically. The sizes of band windows are parametrically changed in order to understand the effects of short columns on overall building behavior.

A Study on the Seismic Performance Design of Waterproofing Materials Applied to Single-side Walls of Underground Structures (지하 구조물 합벽구간에 적용되는 방수재료의 내진성능설계를 위한 기초 자료조사 연구)

  • Kim, Soo Yeon;Na, Mi Ok;Lee, Sung Jin;Kim, Meong Ji;Oh, Sang Keun
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2019.11a
    • /
    • pp.220-221
    • /
    • 2019
  • At a time when the recent earthquake in Pohang, Korea requires the need for seismic performance design not only for concrete structures but also for construction materials used in construction structures, the possibility of applying the seismic performance design of waterproof materials constructed in the form of direct or partial adhesion to concrete structures in the underground Single-side walls section was confirmed.

  • PDF

Innovative Design and Practice in Horizontal Skyscraper-ChongQing Raffles

  • Li-Gang, Zhu
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.197-205
    • /
    • 2022
  • One of important design challenges in Chongqing Raffles City Plaza project is Sky Bridge structural design and its connection scheme in high level. This article systematically describes the structural system and its design and analysis methodology, with discussing the impacts on structural performance due to different connection approaches. The seismic isolation scheme in high level is innovatively adopted to the final design. Under the conditions of various load cases, the different models and assumptions are implemented. A full assessment on Sky Bridge's structural performance, seismic isolation, and its connection is conducted in terms of seismic performance based design. By co-operating with architecture, MEP and other disciplines, the structural economy index is fulfilled.

Seismic performance assessment of deteriorated reinforced concrete columns using a new plastic-hinge element

  • Tae-Hoon Kim;Hosung Jung
    • Computers and Concrete
    • /
    • v.32 no.2
    • /
    • pp.139-148
    • /
    • 2023
  • The purpose of this paper is to numerically assess the seismic performance of deteriorated reinforced concrete columns using a new plastic-hinge element. Developing a three dimensional (3D) nonlinear model can be difficult and computationally complex, and there can be problems applying it in the field. Thus, to solve these problems, a plastic-hinge element that could considers the shear deformation of deteriorated reinforced concrete columns was proposed. The developed element was based on the Timoshenko beam model and used two nodes with six degrees of freedom and a zero-length element. Moreover, the developed model could consider the combined effects of corrosion, as demonstrated by the reduced reinforcement area and the loss of bond. Consequently, the numerical procedures developed for evaluating the seismic performance of deteriorated columns were validated by comparing the verification results.

Seismic Performance of Coupled Shear Wall Structural System with Relaxed Reinforcement Details (완화된 배근 상세를 갖는 병렬전단벽 구조시스템의 내진성능평가)

  • Song, Jeong-Weon;Chun, Young-Soo;Song, Jin-Kyu;Seo, Soo-Yeon;Yang, Keun-Hyeok
    • Journal of the Korea Concrete Institute
    • /
    • v.28 no.2
    • /
    • pp.187-196
    • /
    • 2016
  • The current seismic design code prescribes that coupling beam should be reinforced using diagonally bundled bars. However, the use of a diagonally bundled bars has a negative effect on constructability and economic efficiency. In the present study, the seismic performance of 4 coupling beams with the different details of reinforcement was evaluated through a cyclic reversal loading test. The specimens were constructed to measure the results of the experimental variable regarding the details of shear reinforcement. Next, the seismic performance of the coupled shear wall system evaluated by methods proposed in the FEMA P695. The cyclic reversal loading test results of this study showed that the performance of coupling beams with relaxed reinforcement detail was almost similar to that of a coupling beam with the ACI detail and meet the level which requested from standard. The result of the seismic evaluation showed that all coupling beams are satisfied with the design code and seismic performance.

Strength upgrading of steel storage rack frames in the down-aisle direction

  • El Kadi, Bassel;Cosgun, Cumhur;Mangir, Atakan;Kiymaz, Guven
    • Steel and Composite Structures
    • /
    • v.23 no.2
    • /
    • pp.143-152
    • /
    • 2017
  • This paper focuses on the seismic performance of pallet-type steel storage rack structures in their down aisle direction. As evidenced by experimental research, the seismic response of storage racks in the down-aisle direction is strongly affected by the nonlinear moment-rotation response of the beam-to-column connections. In their down-aisle direction, rack structures are designed to resist lateral seismic loads with typical moment frames utilizing proprietary beam-to-column moment-resisting connections. These connections are mostly boltless hooked type connections and they exhibit significantly large rotations resulting in large lateral frame displacements when subjected to strong ground motions. In this paper, typical hooked boltless beam-to-column connections are studied experimentally to obtain their non-linear reversed cyclic moment-rotation response. Additionally, a compound type connection involving the standard hooks and additional bolts were also tested under similar conditions. The simple introduction of the additional bolts within the hooked connection is considered to be a practical way of structural upgrade in the connection. The experimentally evaluated characteristics of the connections are compared in terms of some important performance indicators such as maximum moment and rotation capacity, change in stiffness and accumulated energy levels within the cyclic loading protocol. Finally, the obtained characteristics were used to carry out seismic performance assessment of rack frames incorporating the tested beam-to-column connections. The assessment involves a displacement based approach that utilizes a simple analytical model that captures the seismic behavior of racks in their down-aisle direction. The results of the study indicate that the proposed method of upgrading appears to be a very practical and effective way of increasing the seismic performance of hooked connections and hence the rack frames in their down-aisle direction.