• 제목/요약/키워드: seismic-performance

검색결과 3,015건 처리시간 0.028초

확률론적 내진성능평가를 위한 다자유도 교량구조물의 지진취약도해석 (Seismic Fragility Analysis for Probabilistic Seismic Performance Evaluation of Multi-Degree-of-Freedom Bridge Structures)

  • 김학수;송종걸
    • 한국방재학회:학술대회논문집
    • /
    • 한국방재학회 2008년도 정기총회 및 학술발표대회
    • /
    • pp.269-272
    • /
    • 2008
  • 구조물의 지진취약도곡선은 임의의 크기를 가진 지진에 대하여 구조물에 어느 규모이상의 손상이 발생할 확률을 의미하는 것으로 구조물의 내진성능평가 및 손실평가 하는데 아주 중요하다. 본 논문은 선진국의 지진취약도 추정기법을 분석하여 국내 실정에 적합한 지진취약도 추정 기법을 확립하기 위한 연구방법론을 제시하는 데 그 목적이 있다. 이를 위해 우선 지진취약도함수의 개발현황을 조사하였다. 그 다음 이러한 평가방법을 국내에 적용하기 위하여 국내의 교량구조물을 분류하였다. 마지막으로는 PSC Box 거더교에 대해서 지진취약도곡선을 평가하였다. 평가 결과 구조물의 분류와 손상상태는 구조물의 손상평가와 지진취약도해석에 아주 큰 영향을 미치는 것을 확인할 수 있었다.

  • PDF

고진동수 지진에 대한 기기 정착부의 비탄성 거동을 고려한 지진취약도 평가 (Seismic Fragility Analysis Considering the Inelastic Behavior of Equipment Anchorages for High-Frequency Earthquakes)

  • 임승현;곽신영;최인길;정재욱;김석철
    • 한국지진공학회논문집
    • /
    • 제25권6호
    • /
    • pp.261-266
    • /
    • 2021
  • Nuclear power plants in Korea were designed and evaluated based on the NRC's Regulatory Guide 1.60, a design response spectrum for nuclear power plants. However, it can be seen that the seismic motion characteristics are different when analyzing the Gyeongju earthquake and the Pohang earthquake that has recently occurred in Korea. Compared to the design response spectrum, seismic motion characteristics in Korea have a larger spectral acceleration in the high-frequency region. Therefore, in the case of equipment with a high natural frequency installed in a nuclear power plant, seismic performance may be reduced by reflecting the characteristics of domestic seismic motions. The failure modes of the equipment are typically structural failure and functional failure, with an anchorage failure being a representative type of structural failure. In this study, comparative analyses were performed to decide whether to consider the inelastic behavior of the anchorage or not. As a result, it was confirmed that the seismic performance of the anchorages could be increased by considering the inelastic behavior of an anchorage.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • 제10권1호
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Seismic performance of the historical masonry clock tower and influence of the adjacent walls

  • Cakir, Ferit;Uysal, Habib
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.217-231
    • /
    • 2014
  • Ancient masonry towers are regarded as among the most important historical heritage structures of the world. These slender structures typically have orthogonal and circular geometry in plane. These structural forms are commonly installed with adjacent structures. Because of their geometrical shapes and structural constraints, ancient masonry towers are more vulnerable to earthquake damage. The main goal of the paper is to investigate the seismic behavior of Erzurum Clock Tower under earthquake loading and to determine the contribution of the castle walls to the seismic performance of the tower. In this study, four three-dimensional finite element models of the Erzurum Clock Tower were developed and the seismic responses of the models were investigated. Time history analyses were performed using the earthquakes that took place in Turkey in 1983 near Erzurum and in 1992 near Erzincan. In the first model, the clock tower was modeled without the adjacent walls; in the second model, the clock tower was modeled with a castle wall on the south side; in the third model, the clock tower was modeled with a castle wall on the north side; and in the last model, the clock tower was modeled with two castle walls on both the north and south sides. Results of the analyses show that the adjacent walls do not allow lateral movements and the horizontal displacements decreases. It is concluded that the adjacent structures should be taken into consideration when modeling seismic performance in order to get accurate and realistic results.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

Shear stress indicator to predict seismic performance of residential RC buildings

  • Tekeli, Hamide;Dilmac, Hakan;Demir, Fuat;Gencoglu, Mustafa;Guler, Kadir
    • Computers and Concrete
    • /
    • 제19권3호
    • /
    • pp.283-291
    • /
    • 2017
  • A large number of residential buildings in regions subjected to severe earthquakes do not have enough load carrying capacity. The most of them have been constructed without receiving any structural engineering attention. It is practically almost impossible to perform detailed experimental evaluation and analytical analysis for each building to determine their seismic vulnerability, because of time and cost constraints. This fact points to a need for a simple evaluation method that focuses on selection of buildings which do not have the life safety performance level by adopting the main requirements given in the seismic codes. This paper deals with seismic assessment of existing reinforced concrete residential buildings and contains an alternative simplified procedure for seismic evaluation of buildings. Accuracy of the proposed procedure is examined by taking into account existing 250 buildings. When the results of the proposed procedure are compared with those of the detailed analyses, it can be seen that the results are quite compatible. It is seen that the accuracy of the proposed procedure is about 80% according to the detailed analysis results of existing buildings. This accuracy percentage indicates that the proposed procedure in this paper can be easily applied to existing buildings to predict their seismic performance level as a first approach before implementing the detailed and complex analyses.

수계 파이프 시스템의 내진설계에 관한 연구 (A Study on the Seismic Design for Water Exthinguishing Piping Systems)

  • 이동명
    • 한국화재소방학회논문지
    • /
    • 제22권1호
    • /
    • pp.10-15
    • /
    • 2008
  • 본 연구에서는 수계 시스템 중 스프링클러 헤드 파이프라인에 대한 내진설계를 수행하였다. 내진해석에 필요한 내진설계용 스펙트럼에 대응하는 인공지진 진동파형을 작성하고, 작성된 인공지진 진동에 대한 동적 응답스펙트럼을 해석하였다. 내진설계를 위한 공학적 기반을 구축하였으며, 수계 및 가스계 파이프 시스템의 내진설계 기법을 제시하였다. 또한 본 연구의 결과로부터 수계 시스템의 파이프라인뿐만 아니라 소방시스템의 내진설계 및 성능평가에 응용할 수 있는 기틀을 마련하였다. 향후 진도규모 및 지반종류에 따른 추가적인 연구가 수행된다면 소방시스템의 신뢰성 향상과 안전성 제고, 성능위주설계가 이루어질 수 있을 것으로 본다.

Seismic isolation performance sensitivity to potential deviations from design values

  • Alhan, Cenk;Hisman, Kemal
    • Smart Structures and Systems
    • /
    • 제18권2호
    • /
    • pp.293-315
    • /
    • 2016
  • Seismic isolation is often used in protecting mission-critical structures including hospitals, data centers, telecommunication buildings, etc. Such structures typically house vibration-sensitive equipment which has to provide continued service but may fail in case sustained accelerations during earthquakes exceed threshold limit values. Thus, peak floor acceleration is one of the two main parameters that control the design of such structures while the other one is peak base displacement since the overall safety of the structure depends on the safety of the isolation system. And in case peak base displacement exceeds the design base displacement during an earthquake, rupture and/or buckling of isolators as well as bumping against stops around the seismic gap may occur. Therefore, obtaining accurate peak floor accelerations and peak base displacement is vital. However, although nominal design values for isolation system and superstructure parameters are calculated in order to meet target peak design base displacement and peak floor accelerations, their actual values may potentially deviate from these nominal design values. In this study, the sensitivity of the seismic performance of structures equipped with linear and nonlinear seismic isolation systems to the aforementioned potential deviations is assessed in the context of a benchmark shear building under different earthquake records with near-fault and far-fault characteristics. The results put forth the degree of sensitivity of peak top floor acceleration and peak base displacement to superstructure parameters including mass, stiffness, and damping and isolation system parameters including stiffness, damping, yield strength, yield displacement, and post-yield to pre-yield stiffness ratio.

Seismic behavior of isolated bridges with additional damping under far-field and near fault ground motion

  • Losanno, Daniele;Hadad, Houman A.;Serino, Giorgio
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.119-130
    • /
    • 2017
  • This paper presents a numerical investigation on the seismic behavior of isolated bridges with supplemental viscous damping. Usually very large displacements make seismic isolation an unfeasible solution due to boundary conditions, especially in case of existing bridges or high risk seismic regions. First, a suggested optimal design procedure is introduced, then seismic performance of three real bridges with different isolation systems and damping levels is investigated. Each bridge is studied in four different configurations: simply supported (SSB), isolated with 10% damping (IB), isolated with 30% damping (LRB) and isolated with optimal supplemental damping ratio (IDB). Two of the case studies are investigated under spectrum compatible far-field ground motions, while the third one is subjected to near-fault strong motions. With respect to different design strategies proposed by other authors, results of the analysis demonstrated that an isolated bridge equipped with HDLRBs and a total equivalent damping ratio of 70% represents a very effective design solution. Thanks to confirmed effective performance in terms of base shear mitigation and displacement reduction under both far field and near fault ground motions, as well as for both simply supported and continuous bridges, the suggested control system provides robustness and reliability in terms of seismic performance also resulting cost effective.

Effects of shear keys on seismic performance of an isolation system

  • Wei, Biao;Li, Chaobin;Jia, Xiaolong;He, Xuhui;Yang, Menggang
    • Smart Structures and Systems
    • /
    • 제24권3호
    • /
    • pp.345-360
    • /
    • 2019
  • The shear keys are set in a seismic isolation system to resist the long-term service loadings, and are cut off to isolate the earthquakes. This paper investigated the influence of shear keys on the seismic performance of a vertical spring-viscous damper-concave Coulomb friction isolation system by an incremental dynamic analysis (IDA) and a performance-based assessment. Results show that the cutting off process of shear keys should be simulated in a numerical analysis to accurately predict the seismic responses of isolation system. Ignoring the cutting off process of shear keys usually leads to untrue seismic responses in a numerical analysis, and many of them are unsafe for the design of isolated structure. And those errors will be increased by increasing the cutting off force of shear keys and decreasing the spring constant of shear keys, especially under a feeble earthquake. The viscous damping action postpones the cutting off time of shear keys during earthquakes, and reduces the seismic isolation efficiency. However, this point can be improved by increasing the spring constant of shear keys.