• Title/Summary/Keyword: seismic-performance

Search Result 2,996, Processing Time 0.032 seconds

Development of PBD Method for Concrete Mix Proportion Design Using Bayesian Probabilistic Method (Bayesian 통계법을 활용한 성능기반형 콘크리트 배합설계방법 개발)

  • Kim, Jang-Ho Jay;Phan, Duc-Hung;Lee, Keun-Sung;Yi, Na-Hyun;Kim, Sung-Bae
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.2
    • /
    • pp.171-177
    • /
    • 2010
  • Recently, Performance Based Design (PBD) method has been studied as a next generation structural design method, which enables a designed structure to satisfy the required performance during its service life. One method of deciding whether the required performance has been satisfied is Bayesian method, which has been commonly used in seismic analysis. Generally, it is presented as a conditional probability of exceeding some limit state (i.e., collapse) for a given ground motion. In PBD of concrete mixture design, the same methodology can be applied to assess concrete material performance based on some conditional parameters (i.e. strength, workability, carbonation, etc). In this paper, a detailed explanation of the procedure of drawing satisfaction curve by using Bayesian method based on various material parameters is shown. Also, a discussion of using the developed satisfaction curves for PBD for concrete mixture design is presented.

Hysteretic performance of SPSWs with trapezoidally horizontal corrugated web-plates

  • Kalali, Hamed;Hajsadeghi, Mohammad;Zirakian, Tadeh;Alaee, Farshid J.
    • Steel and Composite Structures
    • /
    • v.19 no.2
    • /
    • pp.277-292
    • /
    • 2015
  • Previous research has shown that steel plate shear walls (SPSWs) are efficient lateral force-resisting systems against both wind and seismic loads. A properly designed SPSW can have high initial stiffness, strength, and energy absorption capacity as well as superior ductility. SPSWs have been commonly designed with unstiffened and stiffened infill plates based on economical and performance considerations. Recent introduction and application of corrugated plates with advantageous structural features has motivated the researchers to consider the employment of such elements in stiffened SPSWs with the aim of lowering the high construction cost of such high-performing systems. On this basis, this paper presents results from a numerical investigation of the hysteretic performance of SPSWs with trapezoidally corrugated infill plates. Finite element cyclic analyses are conducted on a series of flat- and corrugated-web SPSWs to examine the effects of web-plate thickness, corrugation angle, and number of corrugation half-waves on the hysteretic performance of such structural systems. Results of the parametric studies are indicative of effectiveness of increasing of the three aforementioned web-plate geometrical and corrugation parameters in improving the cyclic response and energy absorption capacity of SPSWs with trapezoidally corrugated infill plates. Increasing of the web-plate thickness and number of corrugation half-waves are found to be the most and the least effective in adjusting the hysteretic performance of such promising lateral force-resisting systems, respectively. Findings of this study also show that optimal selection of the web-plate thickness, corrugation angle, and number of corrugation half-waves along with proper design of the boundary frame members can result in high stiffness, strength, and cyclic performances of such corrugated-web SPSWs.

Study on the Performance of New Shear Resistance Connecting Structure of Precast Member (프리캐스트 부재의 새로운 전단저항 연결체의 성능에 관한 연구)

  • Kim, Tae-Hoon;Jin, Byeong-Moo;Kim, Young-Jin;Kim, Seong-Woon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1A
    • /
    • pp.147-154
    • /
    • 2008
  • The purpose of this study is to critically evaluate the structural performance of an innovative new shear resistance connecting structure of precast member. Joints such as shear resistance connecting structure require special attention when designing and constructing precast segmental structures. An experimental and analytical study was conducted to quantify performance measures and examine one aspect of detailing for developed shear resistance connecting structure. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. A joint element is used to predict the inelastic behavior of the joints between segmental members. Future work by the authors will do a model test of precast segmental prestressed concrete bridge columns with this shear resistance connecting structure, and examined both the structural behavior and seismic performance.

Experimental study on shear capacity of SRC joints with different arrangement and sizes of cross-shaped steel in column

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • v.21 no.2
    • /
    • pp.267-287
    • /
    • 2016
  • The seismic performance of the ordinary steel reinforced concrete (SRC) columns has no significant improvement compared to the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type shaped steel were put forward on this background, and they were named as enlarging cross-shaped steel and diagonal cross-shaped steel for short. The seismic behavior and carrying capacity of new-type SRC columns have been researched theoretically and experimentally, while the shear behavior remains unclear when the new-type columns are joined onto SRC beams. This paper presents an experimental study to investigate the shear capacity of new-type SRC joints. For this purpose, four new-type and one ordinary SRC joints under low reversed cyclic loading were tested, and the failure patterns, load-displacement hysteretic curves, joint shear deformation and steel strain were also observed. The ultimate shear force of joint specimens was calculated according to the beam-end counterforce, and effects of steel shape, load angel and structural measures on shear capacity of joints were analyzed. The test results indicate that: (1) the new-type SRC joints display shear failure pattern and has higher shear capacity than the ordinary one; (2) the oblique specimens have good bearing capacity if designed reasonably; and (3) the two proposed construction measures have little effect on the shear capacity of SRC joints embedded with diagonal cross-shaped steel. Based on the mechanism observed from the test, the formulas for calculating ultimate shear capacity considering the main factors (steel web, stirrup and axial compression ratio) were derived, and the calculated results agreed well with the experimental and simulated data.

An Experimental Study on the Structural Performance of Lightly Reinforced Concrete Frame Retrofitted with Concrete Block and Cast-In Place Infilled Wall (블록 끼움벽과 현장타설 끼움벽으로 보강된 비내진 상세 철근콘크리트 골조의 구조성능에 관한 실험적 연구)

  • Choi, Chang-Sik;Lee, Hye-Yeon;Kim, Sun-Woo;Yun, Hyun-Do
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.9 no.2
    • /
    • pp.199-206
    • /
    • 2005
  • In many other countries framed structures with inadequate lateral strength and stiffness have been strengthened by providing reinforced concrete infilled wall. There is a general agreement among researchers those infilled walls have 3-5times greater lateral strength compared with bare frame. The main objective of this research is to investigate the behavior and strength of reinforced concrete frames infilled with concrete block and cast-in-place reinforced concrete panels used for strengthening the structure against seismic action. For this purpose three 1/3 scale, one-bay, one-story reinforced concrete infilled frames were tested under reversed cyclic loading simulating the seismic effect. The results indicate that infilled walls increase both strength and stiffness significantly under lateral loads. Especially Strength capacity and initial stiffness of CIP infilled wall increased 3.8 times and 6.6 times higher than lightly reinforced concrete frame.

Short-Array Beamforming Technique for the Investigation of Shear-Wave Velocity at Large Rockfill Dams (대형 사력댐에서의 전단파속도 평가를 위한 단측선 빔형성기법)

  • Joh, Sung-Ho;Norfarah, Nadia Ismail
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.33 no.1
    • /
    • pp.207-218
    • /
    • 2013
  • One of the input parameters in the evaluation of seismic performance of rockfill dams is shear-wave velocity of rock debris and clay core. Reliable evaluation of shear-wave velocity by surface-wave methods requires overcoming the problems of rock-debris discontinuity, material inhomogeneity and sloping boundary. In this paper, for the shear-wave velocity investigation of rockfill dams, SBF (Short-Array Beamforming) technique was proposed using the principles of conventional beamforming technique and adopted to solve limitations of the conventional surface-wave techniques. SBF technique utilizes a 3- to 9-m long measurement array and a far-field source, which allowed the technique to eliminate problems of near-field effects and investigate local anomalies. This paper describes the procedure to investigate shear-wave velocity profile of rockfill dams by SBF technique and IRF (Impulse-response filtration) technique with accuracy and reliability. Validity of the proposed SBF technique was verified by comparisons with downhole tests and CapSASW (Common-Array-Profiling Spectral-Analysis-of-Surface-Waves) tests at a railroad embankment compacted with rock debris.

Nonlinear Time History Analysis of Long Span Cable-Stayed Bridge Considering Multi-Support Excitation (다지점 가진을 고려한 장경간 사장교의 비선형시간이력해석)

  • Kim, Jin-Il;Ha, Su-Bok;Sung, Dae-Jung;Kim, Mun-Young;Shin, Hyun-Mock
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.6
    • /
    • pp.655-662
    • /
    • 2011
  • For analyzing seismic performance of long-span bridge for multi-support excitation and preparing technically and efficiently for a variety of design demands, the new module on multiple excitation was built in a reliable non-linear analysis program(RCAHEST) by using Influence Line Method, and the study on structures was performed previously. Also, the result of the analysis through RCAHEST was compared and verified with commercial finite element analysis program SAP2000 by using the feature of Multi-Support Excitation. From these results, nonlinear time history analysis considering multi-support excitation was studied after designing FE model of Incheon cable-stayed bridge. It was proved that the maximum response of horizontal displacement decreased as the time delay was increasing at all nodes of bridge. And then the serviceability of analysis model was evaluated by performing ultimate analysis under changes in maximum acceleration of seismic load data.

Estimation of Interstory Drift for Moment Resisting Reinforced Concrete Frames Using Equivalent SDOF System (등가 1자유도계를 이용한 철근콘크리트 골조건물의 층간변위 응답 산정)

  • Kang, Ho-Geun;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.5 s.39
    • /
    • pp.25-33
    • /
    • 2004
  • To evaluate the seismic capacity of a multistorey building structures in performance based seismic design, it is needed to convert MDOF model into equivalent SDOF model. This paper presents predictions for interstory drift of multistorey structures using method of converting a MDOF system into an equivalent SDOF model. The principal objective of this investigation is to evaluate appropriateness of converting method through performing nonlinear time history analysis of a multistory building structures and an equivalent SDOF model. Comparing the interstory drift of multistorey structures calculated by time history analysis and those evaluated by an equivalent SDOF model, the adequacy and the validity of converting method is verified. The conclusion of this study is following; A method of converting a MDOF system into an equivalent SDOF model through the nonlinear time history response analysis is valid. Inelastic first mode shapes are expected to be more accurate than elastic first mode shapes in obtaining interstory drift of multistorey structures from equivalent SDOF model.

Behavior of Reduced Beam Section Connectios with Web Openins (웨브 개구부를 갖는 철골 보-기둥 접합부의 내진 성능에 관한 연구)

  • Park, Jong Won;Kang, Seoung Min;Hwang, In Kyu;Kang, Tae Kyoung;Kwon, Ki Ju
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.4
    • /
    • pp.395-405
    • /
    • 2001
  • A test program was conducted on seismic-resistant steel moment connections constructed using Reduced Beam Sections with beam web openings. In the connection, in order to enhance ductility capacity under severe cyclic loads, a portion of the beam web near the beam-to-column connection is cut out instead of the beam flange as in dogbone connections. A total of 4 large scale specimens were tested in this program. The specimens were all made using $H-458{\times}417{\times}30{\times}50$ sections for the columns and $H-792{\times}300{\times}14{\times}22$ sections for the beams. Test specimens showed excellent performance similar to that of dogbone connections.

  • PDF

Aseismatic Performance Analysis of Circular RC Bridge Piers II. Suggestion for Transverse Steel Ratio (원형 철근콘크리트 교각의 내진성능 II. 심부구속철근비 제안)

  • Park Chang-Kyu;Lee Dae-Hyoung;Lee Beom-Gi;Chung Young-Soo
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.775-784
    • /
    • 2005
  • In this research, major design factors have been evaluated for the establishment of the rational seismic design code of circular RC(reinforced concrete) bridge pier Previous experimental researches have drawn a conclusion that transverse confinement reinforcements have been excessively used for RC bridge piers in Korea. Thus, the objective of this study is to propose a rational design equation for transverse reinforcements of RC bridge piers in Korea which would be classified as a low or moderate seismic region. Newly proposed equation further considers the effect of the axial force ratio and the longitudinal steel ratio. Minimum transverse confinement steel ratio is also proposed to avoid probable buckling of the longitudinal reinforcing steels subjected to relatively low axial force. It is thought that these new codes seem to alleviate the rebar congestion in the plastic hinge region of RC bridge piers which contribute to the enhancement of constructibility and economization for RC bridge construction.