• Title/Summary/Keyword: seismic unit

Search Result 139, Processing Time 0.027 seconds

Dynamic Behaviour of Bridges with Hysteric Isolator under Seismic Acceleration (이력 감진장치를 설치한 교량의 지진에 의한 동적 거동)

  • Im, Jung-Soon;Jo, Jae-Byung;An, Young-Gi;Lee, Hee-Mok;Hong, Soon-Jin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.3 no.3
    • /
    • pp.149-156
    • /
    • 1999
  • Numerical studies were carried out to investigate the mechanical properties of competent hysteric isolators for seismic design of bridge. For dynamic analysis, bridges with isolator were simplified to a model with single degree of freedom. The initial stiffness and the yielding forces of hysteric isolators were varied. Seismic responses obtained by time history analysis show that about 4% of the weight acting as the inertia force is appropriate for the yielding force of isolator. And also better results could be achieved with the values about two times the weight per unit displacement for the initial stiffness of isolator.

  • PDF

Improvement in Design Load and Seismic Performance Objective for Industrial and Environmental Facilities (산업환경시설의 설계하중과 내진성능목표 개선안)

  • Kim, Ickhyun;Hong, Kee-Jeung;Kim, Jung Han;Lee, Jin Ho;Cho, Sunggook;Lee, Jin-Hyeong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.42 no.6
    • /
    • pp.763-773
    • /
    • 2022
  • Industrial and environmental facilities, which are national growth engine, must sustain their structural safety and maintain their process to continue production activities under various load conditions including natural hazards. In this study, by improving existing design codes which aim to secure the structural safety only, new structural and seismic design codes are proposed to secure both the structural safety and the operability of facilities. In the proposed structural design code, a variety of loads to reflect the characteristics of industrial and environmental facilities are considered and load combinations for the ultimate strength design and the allowable stress design of structures are suggested. Considering the importance of a unit industrial facility and that of a unit process, the seismic design class, design earthquake, and seismic performance level of a unit component are determined to achieve the dual seismic performance objectives for securing both the structural safety and the operability. Also, the proposed design code are applied to an example of an environmental facility in order to examine its applicability.

Seismic vulnerability assessment of RC buildings according to the 2007 and 2018 Turkish seismic codes

  • Yon, Burak
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.709-718
    • /
    • 2020
  • Fragility curves are useful tools to estimate the damage probability of buildings owing to seismic actions. The purpose of this study is to investigate seismic vulnerability of reinforced concrete (RC) buildings, according to the 2007 and 2018 Turkish Seismic Codes, using fragility curves. For the numerical analyses, typical five- and seven-storey RC buildings were selected and incremental dynamic analyses (IDA) were performed. To complete the IDAs, eleven earthquake acceleration records multiplied by various scaling factors from 0.2g to 0.8g were used. To predict nonlinearity, a distributed hinge model that involves material and geometric nonlinearity of the structural members was used. Damages to confined concrete and reinforcement bar of structural members were obtained by considering the unit deformation demands of the 2007 Turkish Seismic Code (TSC-2007) and the 2018 Turkey Building Earthquake Code (TBEC-2018). Vulnerability evaluation of these buildings was performed using fragility curves based on the results of incremental dynamic analyses. Fragility curves were generated in terms of damage levels occurring in confined concrete and reinforcement bar of structural members with a lognormal distribution assumption. The fragility curves show that the probability of damage occurring is more according to TBEC-2018 than according to TSC-2007 for selected buildings.

Review of Seismic Analysis Method for Free Standing High Density Spent Fuel Racks of PWR Plant (가압경수형 발전소 자립형 고밀도 핵연료 저장랙의 지진해석 방법에 대한 검토)

  • 신태명;김범식;손갑헌
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.10a
    • /
    • pp.183-190
    • /
    • 1994
  • The paper provides a review of the analysis methods currently being used to perform seismic analysis of free standing high density spent fuel storage racks for PWR. On the basis of the analysis techniques obtained by KAERI from the design experience of Yonggwang unit 3&4 and Ulchin unit 3&4, the analysis procedure and modeling methods are discussed. The analysis of free standing fuel racks requires consideration of complex phenomena such as hydrodynamic coupling, impact through gap between fuel assembly and poison box and racks, frictional effect, rigid body sliding and tipping and etc. The present modeling of these factors is reviewed in comparison with the recommendation of regulatory group. Further improvement of analysis method and the current issues for the development are discussed.

  • PDF

Variations in the hysteretic behavior of LRBs as a function of applied loading

  • Ozdemir, Gokhan;Bayhan, Beyhan;Gulkan, Polat
    • Structural Engineering and Mechanics
    • /
    • v.67 no.1
    • /
    • pp.69-78
    • /
    • 2018
  • The study presented herein focused on the change in hysteretic force-deformation behavior of lead rubber bearings (LRBs). The material model used to idealize response of LRBs under cyclic motion is capable of representing the gradual attrition in strength of isolator unit on account of lead core heating. To identify the effect of loading history on the hysteretic response of LRBs, a typical isolator unit is subjected to cyclic motions with different velocity, amplitude and number of cycles. Furthermore, performance of an LRB isolated single degree of freedom system is studied under different seismic input levels. Finally, the significance of lead core heating effect on LRBs is discussed by considering the current design approach for base isolated structures. Results of this study show that the response of an LRB is governed strongly by the amplitude and number of cycles of the motion and the considered seismicity level.

Seismic vulnerability macrozonation map of SMRFs located in Tehran via reliability framework

  • Amini, Ali;Kia, Mehdi;Bayat, Mahmoud
    • Structural Engineering and Mechanics
    • /
    • v.78 no.3
    • /
    • pp.351-368
    • /
    • 2021
  • This paper, by applying a reliability-based framework, develops seismic vulnerability macrozonation maps for Tehran, the capital and one of the most earthquake-vulnerable city of Iran. Seismic performance assessment of 3-, 4- and 5-story steel moment resisting frames (SMRFs), designed according to ASCE/SEI 41-17 and Iranian Code of Practice for Seismic Resistant Design of Buildings (2800 Standard), is investigated in terms of overall maximum inter-story drift ratio (MIDR) and unit repair cost ratio which is hereafter known as "damage ratio". To this end, Tehran city is first meshed into a network of 66 points to numerically locate low- to mid-rise SMRFs. Active faults around Tehran are next modeled explicitly. Two different combination of faults, based on available seismological data, are then developed to explore the impact of choosing a proper seismic scenario. In addition, soil effect is exclusively addressed. After building analytical models, reliability methods in combination with structure-specific probabilistic models are applied to predict demand and damage ratio of structures in a cost-effective paradigm. Due to capability of proposed methodology incorporating both aleatory and epistemic uncertainties explicitly, this framework which is centered on the regional demand and damage ratio estimation via structure-specific characteristics can efficiently pave the way for decision makers to find the most vulnerable area in a regional scale. This technical basis can also be adapted to any other structures which the demand and/or damage ratio prediction models are developed.

Seismic Stratigraphy and Depositional History of Late Quaternary Deposits on the Korea Strait Inner Shelf, Korea

  • Yoo, D.G.;Lee, H.Y.;Kim, S.P.;Kim, K.O.;Koo, N.H.;Kim, Y.G.
    • Journal of the Korean Geophysical Society
    • /
    • v.5 no.4
    • /
    • pp.271-281
    • /
    • 2002
  • Interpretation of high-resolution seismic profiles collected from the inner shetf of the Korea Strait reveals that the shelf sequence in this area consists of three sedimentary units (I, II, and III in a descending order) formed after the last glacial maximum. Lower two units (II and III) represent the transgressive systems tract formed during the Holocene transgression, Unit III above the sequence boundary is interpreted to be the transgressive estuarine deposit, whereas Unit ll above the ravinement surface forms a thin transgressive sand which consists of the sediment produced through shoreface erosion and winnowing during the transgression. Unit I above the maximum flooding surface is the highstand systems tract consisting mainly of recent muds derived from the Nakdong River.

  • PDF

Structural Performance of the Modular System with Fully Restrained Moment Connections using Ceiling Bracket (천장 브래킷을 이용한 완전강접합 모듈러 시스템의 구조성능)

  • Lee, Seung-Jae;Kwak, Eui-Shin;Park, Jae-Seong;Kang, Chang-Hoon;Shon, Su-Deok
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.33 no.12
    • /
    • pp.37-44
    • /
    • 2017
  • Due to structural characteristics, construction costs and duration of a modular system would be saved by minimizing the schedule on the job site. As such, it is crucial to develop a connection that can guarantee stiffness while allowing for simple assembling. Particularly, the mid- to high-rise construction of the modular system necessitates the securing of the structural stability and seismic performance of multi-unit frames and connections, and thus, the stiffness of unit-assembled structures needs to be re-evaluated and designed. However, evaluating a frame consisting of slender members and reinforcing materials is a complicated process. Therefore, the present study aims to examine the structural characteristics of a modular unit connection based a method for reinforcing connection brackets and hinges while minimizing the loss of the cross section. Toward this end, the study modeled the beam-to-column connection of a modular system with the proposed connection, and produced a specimen which was used to perform a cycling loading test. The study compared the initial stiffness, the attributes of the hysteretic behavior, and the maximum flexural moment, and observed whether the model acquired the seismic performance, compared to the flexural strength of the steel moment frame connection that is required by the Korean Building Code. The test results showed that the proposed connection produced a similar initial stiffness value to that of the theoretical equation, and its maximum strength exceeded the theoretical strength. Furthermore, the model with a larger ceiling bracket showed higher seismic performance, which was further increased by the reinforcement of the plate.

Multi-dimensional seismic response control of offshore platform structures with viscoelastic dampers (II-Experimental study)

  • He, Xiao-Yu;Zhao, Tie-Wei;Li, Hong-Nan;Zhang, Jun
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.2
    • /
    • pp.175-194
    • /
    • 2016
  • Based on the change of traditional viscoelastic damper structure, a brand-new damper is designed to control simultaneously the translational vibration and the rotational vibration for platforms. Experimental study has been carried out on the mechanical properties of viscoelastic material and on its multi-dimensional seismic response control effect of viscoelastic damper. Three types of viscoelastic dampers with different shapes of viscoelastic material are designed to test the influence of excited frequency, strain amplitude and ambient temperature on the mechanical property parameters such as circular dissipation per unit, equivalent stiffness, loss factor and storage shear modulus. Then, shaking table tests are done on a group of single-storey platform systems containing one symmetric platform and three asymmetric platforms with different eccentric forms. Experimental results show that the simulation precision of the restoring force model is rather good for the shear deformation of viscoelastic damper and is also satisfied for the torsion deformation and combined deformations of viscoelastic damper. The shaking table tests have verified that the new-type viscoelastic damper is capable of mitigating the multi-dimensional seismic response of offshore platform.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.