• Title/Summary/Keyword: seismic strength

Search Result 1,376, Processing Time 0.027 seconds

Problems in Seismic Design of High-Rise RC Building Frame Systems (초고층 건물골조 시스템의 내진설계상 문제점)

  • Lee, Han-Seon;Jung, Sung-Wook;Ko, Dong-Woo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.195-202
    • /
    • 2005
  • High-rise residential buildings in these days tend to adopt a building frame system as primary earthquake resisting structural system for some architectural reasons. But there exist several ambiguities in designing such building frame systems according to current codes, with regards to : the effective stiffness property of RC cracked section in static and dynamic analyses, analytical model to evaluate story drift ratio and, deformation compatibility requirements of frames. The comparative study for these issues by appling IBC 2000 and KBC 2005 to a typical building frame system shows that demands of member strength and story drift ratio can be different significantly depending on designer's interpretation and application of code requirements.

  • PDF

Eartqyake-Resistance of SlenderShear Wall With no Boundary Confinement (단부 횡보강이 없는 세장한 전단벽의 내진성능)

  • 박홍근;강수민;조봉호;홍성걸
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.04a
    • /
    • pp.375-380
    • /
    • 2000
  • Experimental and numerical studies were done to investigate seismic performance of slender sheat wall with no boundary confinement. 1/3 scale-specimens that model the plastic region of long slender shear walls subjected to combined axial load and bending moment were rested to investigate strength, ductility, capacity of energy dissipation and strain distribution. The experimental results show that the slender walls fail due to early crushing in the compressive boundary, and then have very low ductility. The measured maximum compressive strain is 0.0021, which is much less then 0.004 being commonly used for estimation of ductility. The experimental results indicates that the maximum compressive strain is not a fixed value but is affected by moment gradient along the shear wall height and distance from neutral axis to the extreme compressive fiber.

  • PDF

An Experimental Study of Vertically Suspended Shear Reinforcement for Reinforced Concrete Flat Plate slab (철근콘크리트 무량판 슬래브의 수직걸림형 전단보강재에 관한 실험적 연구)

  • Woo, Jong-Yeol;Hong, Seong-Wook;Doh, Sun-Boong;Kim, Sang-Won
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2012.05a
    • /
    • pp.173-174
    • /
    • 2012
  • This study is concerned with the VSTUD shear reinforcement that it can be installed easily in filed as product at the factory and seismic performance can be achieved. The method of study is as follows. first, we researched constructability and economy of existing method. Secondly, we made specimen and were examined structural performance tests in order to verify the performance of the shear reinforcement. As a result, developed SL shear reinforcement increased in shear strength and stiffness of reinforcement, structural safety is judged to be increased.

  • PDF

An Seismic Performance Study according to Reinforcement Method of Aramid Rods and SRF of Damaged RC Column (손상된 철근콘크리트 기둥의 Aramid봉과 SRF 보강공법에 따른 내진성능연구)

  • Oh, HaeCheol;Lee, Kihak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.15 no.4
    • /
    • pp.91-98
    • /
    • 2015
  • This paper has proposed a reinforcing method for damaged RC columns with SRF sheets and Aramid rods. In order to verify the effectiveness and performance, two original columns and two reinforced columns with SRF sheets and Aramid rods were developed and tested under lateral cyclic displacement and a constant axial load. The test showed that the improvement of energy dissipation capacity was increased in terms of strength and ductility. In addition, an analytical modeling of the standard specimens was proposed using Response-2000 and ZeusNL program. The results of analytical and experimental studies for two standard columns were compared in terms of loading-displacement curve and energy dissipation capacity based on the nonlinear static analysis.

Overstrength factors for SDOF and MDOF systems with soil structure interaction

  • Aydemir, Muberra Eser;Aydemir, Cem
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1273-1289
    • /
    • 2016
  • This paper addresses the concept of lateral overstrength; the ratio of actual lateral strength to design base shear force, for both SDOF and MDOF systems considering soil structure interaction. Overstrength factors are obtained with inelastic time history analysis for SDOF systems for period range of 0.1-3.0 s, five different aspect ratios (h/r=1, 2, 3, 4, 5) and five levels of ductility (${\mu}$=2, 3, 4, 5, 6) considering soil structure interaction. Structural overstrength for MDOF systems are obtained with inelastic time history collapse analysis for sample 1, 3, 6, 9, 12 and 15 storey RC frame systems. In analyses, 64 ground motions recorded on different site conditions such as rock, stiff soil, soft soil and very soft soil are used. Also lateral overstrength ratios considering soil structure interaction are compared with those calculated for fixed-base cases.

Seismic performance evaluation of a building structure using direct displacement-based design method (직접변위설계법을 이용한 건축물의 지진응답 산정)

  • 김진구;방성혁
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.569-576
    • /
    • 2001
  • In this study a procedure for evaluation of performance point using direct displacement-based design method was developed to enhance the applicability of the method. Parametric study has been performed for the natural period of the structure, yield strength, and the stiffness after the first yield. The proposed method was also applied to a 10-story steel frame. To verify the accuracy of the result, the results from capacity spectrum analysis and time history analysis were compared. The results of the proposed method turned out to match well with the results of capacity spectrum method and the time history analysis.

  • PDF

Analytical Study on Splice Performances with the Vertical Noncontact Lapped of Reinforcing Bars (수직으로 비접촉 겹침이음된 철근의 이음성능에 관한 해석적 연구)

  • Lee Ho-Jin;Kim Seung-Hun;Ha Sang-Su;Moon Jeong-Ho;Lee Li-Hyung;Lee Yong-Taeg
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.05a
    • /
    • pp.171-174
    • /
    • 2005
  • In this study, new moment-resisting precast concrete beam-column joint is proposed for moderate seismic regions. It has the connection reinforcing bars, penetrated the joint and lap-spliced with the bottom bars of precast U-beam. To evaluate the performance for noncontact lapped splice, analytical works were conducted. Major variables for FEM analysis are the length of lap, the diameter of connection reinforcing bars, and the distance between lapped bars. The results of this study show thar the these variables has much influence on strength and deformation of lapped joint.

  • PDF

A parametric investigation on the hysteretic behaviour of CFT column to steel beam connections

  • Esfandyary, R.;Razzaghi, M.S.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.1
    • /
    • pp.205-228
    • /
    • 2015
  • The results of a numerical investigation pertaining to the hysteretic behaviour of concrete filled steel tubular (CFT) column to I-beam connections are discussed in detail. Following the verification of the numerical results against the available experimental tests, the nonlinear finite element (FE) analysis was implemented to evaluate the effects of different parameters including the column axial load, beam lateral support, shape and arrangement of stiffeners, stiffness of T-stiffeners, and the number of shear stiffeners. Pursuing this objective, an external CFT column to beam connection, tested previously, was selected as the case-study. The lateral forces on the structure were simulated, albeit approximately, using an incremental cyclic loading reversal applied at the beam tip. The results were compared in terms of hysteretic load-displacement curves, stress distributions in connection, strength, rotation, and energy dissipation capacity. It was shown that external T-stiffeners combined with internal shear stiffeners play an important role in the hysteretic performance of CFT columns to I-beam connections.

Error Analysis of Nonlinear Direct Spectrum Method to Various Earthquakes (다양한 지진에 따른 비선형 직접스펙트럼법의 오차해석)

  • 강병두;박진화;전대환;김재웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.53-60
    • /
    • 2002
  • It has been recognized that damage control must become a more explicit design consideration. In an effort to develop design methods based on performance it is clear that the evaluation of the inelastic response is required. The methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. Some codes proposed the capacity spectrum method based on the nonlinear static(pushover) analysis to determine earthquake-induced demand given the structure pushover curve. This procedure is conceptually simple but iterative and time consuming with some errors. This paper presents a nonlinear direct spectrum method to evaluate seismic Performance of structure, without iterative computations, given the structural initial elastic period and yield strength from the pushover analysis, especially for multi degree of freedom structures. The purpose of this paper is to investigate accuracy and confidence of this method from a point of view of various earthquakes and unloading stiffness degradation parameters.

  • PDF

Behavior of Steel Structures with Buckling-Restrained Braces (가새형 소성감쇠기가 설쳐된 철골건물의 거동분석)

  • 김진구;최현훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.200-207
    • /
    • 2002
  • Energy dissipation capacity and earthquake responses of steel structures installed with unbonded braces(UB) were investigated. Nonlinear dynamic time history analyses were carried out to investigate the seismic response of multi-story model structures with UB having various size and strength. Various techniques were applied to determine proper story-wise distribution of UB in multi-story structures. The analysis results show that the maximum displacements of structures generally decrease as the stiffness of UB increases. However there are cases that the maximum displacement and accumulated damage increases as the stiffness of UB increases, which needs to be checked before deciding proper amount of UB.

  • PDF