• Title/Summary/Keyword: seismic spectral analysis

Search Result 190, Processing Time 0.022 seconds

Analysis of Characteristics of Vertical Response Spectrum of Ground Motions from Domestic Earthquakes (국내 관측자료를 이용한 수직 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung;Hong, Seung-Min;Park, Ki-Jong
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.227-234
    • /
    • 2010
  • The vertical response spectra using the observed ground motions from the recent more than 30 macro earthquakes were analysed and then were compared both to the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and to the Korean Standard Design Response Spectrum for general structures and buildings (1997). 176 vertical ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum had strong dependency on epicentral distance. The results also showed that the vertical response spectra revealed much higher values for frequency bands above 5~7 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.2 second (5 Hz) than the Korean Standard Response Spectrum (SD soil condition). These frequency-dependent spectral values could be related to the characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of vertical seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Development of Site Classification System and Modification of Design Response Spectra considering Geotechnical Site Characteristics in Korea (II) - Development of Site Classification System (국내 지반특성에 적합한 지반분류 방법 및 설계응답스펙트럼 개선에 대한 연구 (II) - 지반분류 개선방법)

  • Yoon, Jong-Ku;Kim, Dong-Soo;Bang, Eun-Seok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.2 s.48
    • /
    • pp.51-62
    • /
    • 2006
  • In the companion paper (I-Problem Statements of the Current Seismic Design Code), the current Korean seismic design code is required to be modified considering site characteristics in Korea for the reliable estimation of site amplification. In this paper, three site classification methods based on the mean shear wave velocity of the top 30m $V_{S30}$, fundamental site periods $(T_G)$ and bedrock depth were investigated and compared with each other to determine the best classification system. Not enough of a difference in the standard deviation of site coefficients $(F_a\;and\;F_v)$ to determine the best system, and neither is the difference between the average spectral accelerations and the design response spectrum of each system. However, the amplification range of RRS values based on $T_G$ were definitely concentrated on a narrow band than other classification system. It means that sites which have a similar behavior during earthquake will be classified as the same site category at the site classification system based on $T_G$. The regression curves between site coefficients and $T_G$ described the effect of soil non linearity well as the rock shaking intensity increases than the current method based on $V_{S30}$. Furthermore, it is unambiguous to determine sue category based on $T_G$ when the site investigation is performed to shallower depth less than 30m, whereas the current $V_{S30}$ is usually calculated fallaciously by extrapolating the $V_s$ of bedrock to 30m. From the results of this study, new site classification system based on $T_G$ was recommended for legions of shallow bedrock depth in Korea.

Estimation of R-factor and Seismic Performance for RC IMRFs using N2 Method (N2 Method를 이용한 RC 중간모멘트 연성골조의 반응수정계수 및 내진성능 평가)

  • 윤정배;이철호;최정욱;송진규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.33-39
    • /
    • 2002
  • Response Modification Factor(R-factor) approach is currently implemented to reflect inelastic ductile behavior of the structures and to reduce elastic spectral demands from earthquakes to the design level. However R factors were set empirically and simply based on the professional committee consensus on observed performance of building structures during past earthquakes. Consequently some major shortcomings linked to the current R factor approach have been pointed out. Using reinforced concrete intermediate moment-resisting frames(RC IMRFs), an analytical procedure is presented in this paper to establish R factor rationally. To this end, analytical R values were evaluated based on N2 Method and compared with the values recommended by IBC 2000. Overall, the analytical results correlated well with the code values. However the results also revealed that R factor might strongly depend on the system fundamental period. As evidenced by the interstory drift index(IDI) analysis results of this study, current R-factor based(or, Life Safety based) design tends to fail in fulfilling other implicit and hopeful performance objectives such as immediate Occupancy and Collapse Prevention. Performance based design(PBD) appears to be a promising approach to meet the multi level seismic performance objectives assigned to the building structures of nowadays.

Analysis of Characteristics of Horizontal Response Spectrum of Ground Motions from 19 Earthquakes (국내 관측자료를 이용한 수평 응답스펙트럼 특성 분석)

  • Kim, Jun-Kyoung
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.399-407
    • /
    • 2010
  • The horizontal response spectra using the observed ground motions from the recent more than 19 macro earthquakes were analysed and then were compared to both the seismic design response spectra (Reg Guide 1.60), applied to the domestic nuclear power plants, and the Korean Standard Design Response Spectrum for general structures and buildings (1997). 130 horizontal ground motions, without considering soil types, were used for normalization with respect to the peak acceleration value of each ground motion. The results showed that response spectrum have strong dependency on epicentral distance. The results also showed that the horizontal response spectra revealed much higher values for frequency bands above 5 Hz than Reg. Guide (1.60). The results were also compared to the Korean Standard Response Spectrum for the 3 different soil types and showed that the vertical response spectra revealed much higher values for the frequency bands below 0.3 second than the Korean Standard Response Spectrum (SD soil condition). These spectral values dependent on frequency could be related to characteristics of the domestic crustal attenuation and the effect of each site amplification. However, through the qualitative improvements and quantitative enhancement of the observed ground motions, the conservation of horizontal seismic design response spectrum should be considered more significantly for the frequency bands above 5 Hz.

Monitoring and Analyzing Water Area Variation of Lake Enriquillo, Dominican Republic by Integrating Multiple Endmember Spectral Mixture Analysis and MODIS Data

  • Kim, Sang Min;Yoon, Sang Hyun;Ju, Sungha;Heo, Joon
    • Ecology and Resilient Infrastructure
    • /
    • v.5 no.2
    • /
    • pp.59-71
    • /
    • 2018
  • Lake Enriquillo, the largest lake in the Dominican Republic, recently has undergone unusual water area changes since 2001 thus it has been affected seriously by local community's livelihood. Earthquakes and seismic activities of Hispaniola plate tectonic coupled with human activities and climate change are addressed as factors causing the increasing. Thus, a thorough study on relationship between lake area changing, and those factors is needed urgently. To do so, this study applied MESMA on MODIS data to extract water area of Lake Enriquillo during 2001 and 2012 bimonthly, with six issues 12-year. MODIS provides high temporal resolution, and its coarse spatial resolution is compensated by MESMA fraction map. The increase in water area was $142.2km^2$, and the maximum lake area was $338.0km^2$ (in 2012). Water areas extracted by two Landsat scenes at two different times with three image classification approaches (ISODATA, MNDWI, and TCW) were used to assess accuracy of MODIS and MESMA results; it indicated that MESMA water areas are same as ISODATA's, less than 0.4%, while the highest difference is between MESMA and TCW, 2.4%. A number of previously formulated hypotheses of lake area change were investigated based on the outcomes of the present study, though none of them could fully explain the changes.

Random vibration analysis of train-slab track-bridge coupling system under earthquakes

  • Zeng, Zhi-Ping;He, Xian-Feng;Zhao, Yan-Gang;Yu, Zhi-Wu;Chen, Ling-Kun;Xu, Wen-Tao;Lou, Ping
    • Structural Engineering and Mechanics
    • /
    • v.54 no.5
    • /
    • pp.1017-1044
    • /
    • 2015
  • This study aimed to investigate the random vibration characteristic of train-slab track-bridge interaction system subjected to both track irregularities and earthquakes by use of pseudo-excitation method (PEM). Each vehicle subsystem was modeled by multibody dynamics. A three-dimensional rail-slab- girder-pier finite element model was created to simulate slab track and bridge subsystem. The equations of motion for the entire system were established based on the constraint condition of no jump between wheel and rail. The random load vectors of equations of motion were formulated by transforming track irregularities and seismic accelerations into a series of deterministic pseudo-excitations according to their respective power spectral density (PSD) functions by means of PEM. The time-dependent PSDs of random vibration responses of the system were obtained by step-by-step integration method, and the corresponding extreme values were estimated based on the first-passage failure criterion. As a case study, an ICE3 high-speed train passing a fifteen-span simply supported girder bridge simultaneously excited by track irregularities and earthquakes is presented. The evaluated extreme values and the PSD characteristic of the random vibration responses of bridge and train are analyzed, and the influences of train speed and track irregularities (without earthquakes) on the random vibration characteristic of bridge and train are discussed.

Evaluation of Ground Compaction Using SASW Testing (SASW 시험을 활용한 지반 현장 다짐도 평가)

  • Gunwoong Kim
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.4
    • /
    • pp.9-15
    • /
    • 2023
  • Compaction is performed in civil engineering sites to secure the stability of the ground and prevent settlement. While the process of compaction is crucial, it is also essential to evaluate the degree of compaction after the completion of the process. In domestic sites, the evaluation of compaction is mainly conducted on a small number of spot using point-based tests such as plate load tests and sand cone tests. The methods presented so far allow assessment of surface compaction, but evaluating compaction in deeper layers poses challenges. Moreover, due to the limited coverage of point-based testing, it is difficult to achieve an overall assessment of compaction. As a solution to these issues, the Spectral-Analysis-of-Surface-Waves (SASW) tests were utilized to evaluate compaction. SASW tests offer a broader measurement range compared to point-based tests, and depending on the test setup, this method can provide the stiffness of the ground at greater depths. In this study, SASW tests were conducted in a compacted soil site under different conditions to assess compaction. Additionally, Nuclear Density Gauge tests were conducted concurrently to compare and verify the results of SASW. The research results confirmed the feasibility of evaluating compaction using SASW at the geotechnical site.

Source Parameters for the 9 December 2000 $M_L$ 3.7 Offshore Yeongdeok Earthquake, South Korea (2000년 12월 9일 $M_L$ 3.7 영덕 해역 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • An earthquake with local magnitude $(M_L)$ 3.7 on December 9, 2000 occurred offshore Yeongdeok area, South Korea. In case of applying Chang and Baag (2006) crustal velocity model, the epicenter is $36.4462^{\circ}N\;and\;129.9789^{\circ}E$, which belongs to the inside of the Korean Peninsula Continental Shelf. Although we use the modified model reducing crustal thickness of Chang and Baag (2006) model by 5 km considering the transition from continental crust to oceanic crust in the East Sea, the epicenter was little changed. We carried out the waveform inversion analysis to estimate focal depth and focal mechanism of this event. The focal depth is estimated to be 11 ~ 12 km. The seismic moment is estimated to be $1.0{\times}10^{15}N{\cdot}m$, and this value corresponds to the moment magnitude $(M_W)$ 3.9. The offshore Yeongdeok event including May 29, 2004 offshore Uljin one show typical thrust faulting, and the direction of P-axis is ESE-WNW. The moment magnitude estimated by the spectral analysis is 4.0, which is similar to that by the waveform inversion analysis. Average stress drop is estimated to be 3.4 MPa.

Development of Empirical Fragility Function for High-speed Railway System Using 2004 Niigata Earthquake Case History (2004 니가타 지진 사례 분석을 통한 고속철도 시스템의 지진 취약도 곡선 개발)

  • Yang, Seunghoon;Kwak, Dongyoup
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.111-119
    • /
    • 2019
  • The high-speed railway system is mainly composed of tunnel, bridge, and viaduct to meet the straightness needed for keeping the high speed up to 400 km/s. Seismic fragility for the high-speed railway infrastructure can be assessed as two ways: one way is studying each element of infrastructure analytically or numerically, but it requires lots of research efforts due to wide range of railway system. On the other hand, empirical method can be used to access the fragility of an entire system efficiently, which requires case history data. In this study, we collect the 2004 MW 6.6 Niigata earthquake case history data to develop empirical seismic fragility function for a railway system. Five types of intensity measures (IMs) and damage levels are assigned to all segments of target system for which the unit length is 200 m. From statistical analysis, probability of exceedance for a certain damage level (DL) is calculated as a function of IM. For those probability data points, log-normal CDF is fitted using MLE method, which forms fragility function for each damage level of exceedance. Evaluating fragility functions calculated, we observe that T=3.0 spectral acceleration (SAT3.0) is superior to other IMs, which has lower standard deviation of log-normal CDF and low error of the fit. This indicates that long-period ground motion has more impacts on railway infrastructure system such as tunnel and bridge. It is observed that when SAT3.0 = 0.1 g, P(DL>1) = 2%, and SAT3.0 = 0.2 g, P(DL>1) = 23.9%.

Application of the SASW Method to the Evaluation of Grouting Performance for a Soft Ground of a Tunnel (터널 원지반의 그라우팅 보강 평가를 위한 SASW 기법의 적용)

  • 조미라;강태호
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.273-283
    • /
    • 2003
  • Fissured rock and soft ground always suggest, problems in the construction of the underground space. The stress release of the weak underground material by opening the underground space with a soft ground, fissures and joints can lead to the failure of the opening. Grouting of the weak rock and the soft ground, which is a process of injecting some bonding agents into the soft ground, is one of the measures to reinforce the soft ground and to prohibit the failure of the underground construction due to the stress release. The proper installation of the grouting is essential to ensuring the safety of the tunneling operation, so that the evaluation of the grouting performance is very significant. The general procedure of evaluating the grouting is coring the grouted section and measuring the compression strength of the core. However, sometimes when the grouted section is at the crown of the tunnel and the grouting is installed at a wide section, the coring is not good enough. This study is oriented to propose a new and a non-destructive procedure of evaluating the grouting performance. The proposed method is based on the wave propagation of elastic waves, and evaluates the shear stiffness of the ground and investigates the anomalies such as voids and cracks. The SASW ( Spectral-Analysis-of-Surface-Waves) method is one of the candidate s to make the inspection of the pouting performance, and is adopted in this study. The practical grouting activity was monitored by SASW method, and the proposed method was applied to the inspection of the grouting performance to check the verification of the proposed method.