• Title/Summary/Keyword: seismic safety

검색결과 1,020건 처리시간 0.104초

횡변형 방지 상세 유무 및 스트럿 형상에 따른 강재댐퍼의 성능 비교 (Performance Comparison of Steel Dampers with or without Lateral Deformation Prevention Details and Strut Shapes)

  • 이현호
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.66-73
    • /
    • 2022
  • 본 연구에서는 록킹 거동을 하는 강재댐퍼에 대한 기존 연구결과를 근간으로 스트럿 높이가 동일하고 단면적이 유사한 댐퍼 7개의 실험결과를 비교하였다. 강판댐퍼로 Ldpd(횡변형 방지 상세) 없는 SI-260, SV-260, SS-260, Ldpd 있는 I-1, V-1, S-1 및 강봉댐퍼인 R20-260을 평가하였다. 또한 단면적이 0.56배인 R15-260도 같이 평가하여, 강봉댐퍼 거동 성능을 적절히 평가하고자 하였다. 중요한 연구결과는 강판댐퍼의 일방향성을 개선한 강봉댐퍼 적용의 우수성이며, 이는 모멘트 저항 능력 및 변위비 평가에서도 확인할 수 있었다. 평가결과, 강봉댐퍼인 R20-260의 성능이 가장 우수한 것으로 평가되었다. 또한 변위비 2.0까지 변형 능력을 나타내어, 충분한 내진성능을 보유한 것으로 판단된다.

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • 제22권2호
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.

A comparative study on rapid seismic risk prioritization for reinforced concrete buildings in Antalya, Türkiye

  • Engin Kepenek;Kasim A. Korkmaz;Ziya Gencel
    • Computers and Concrete
    • /
    • 제31권3호
    • /
    • pp.185-195
    • /
    • 2023
  • Antalya is located south part of minor Asia, one of the biggest cities in Türkiye. As a result of population growth and vast migration to Antalya, many parts of the city that were not suitable for construction due to its geological conditions have become urban areas, and most of these urban areas are full of poorly engineered buildings. Poor engineering has been combined with unplanned urbanization, that causes utter vulnerability to disasters in Antalya. When an earthquake-prone city, Antalya faces with an earthquake risk, fear arises in society. To overcome this problem, it has become necessary to investigate the building stock, expressed in hundreds of thousands, in a fast and reliable way and then perform an urban transformation to create the perception of structural safety. However, the excessive building stock, labor, and economic problems made the implementation stage challenging and revealed the necessity of finding alternative solutions in the field. The present study presents a novel approach for assessment and model based on a rapid visual inspection method to transform areas under earthquake risk in Türkiye. The approach aimed to rank the interventions for decision-making mechanisms by making comparisons in the scale hierarchy. In the present study, to investigate the proposed approach, over 26,000 buildings were examined in Antalya, which is the fifth largest city in Türkiye that has a population of over 2.5 Million. In the results of the study, the risk classification was defined in the framework of building, block, street, neighborhood, and district scales.

Buckling resistance behavior of WGJ420 fire-resistant weathering steel columns under fire

  • Yiran Wu;Xianglin Yu;Yongjiu Shi;Yonglei Xu;Huiyong Ban
    • Steel and Composite Structures
    • /
    • 제47권2호
    • /
    • pp.269-287
    • /
    • 2023
  • The WGJ420 fire-resistant weathering (FRW) steel is developed and manufactured with standard yield strength of 420 MPa at room temperature, which is expected to significantly enhance the performance of steel structures with excellent fire and corrosion resistances, strong seismic capacity, high strength and ductility, good resilience and robustness. In this paper, the mechanical properties of FRW steel plates and buckling behavior of columns are investigated through tests at elevated temperatures. The stress-strain curves, mechanical properties of FRW steel such as modulus of elasticity, proof strength, tensile strength, as well as corresponding reduction factors are obtained and discussed. The recommended constitutive model based on the Ramberg-Osgood relationship, as well as the relevant formulas for mechanical properties are proposed, which provide fundamental mechanical parameters and references. A total of 12 FRW steel welded I-section columns with different slenderness ratios and buckling load ratios are tested under standard fire to understand the global buckling behavior in-depth. The influences of boundary conditions on the buckling failure modes as well as the critical temperatures are also investigated. In addition, the temperature distributions at different sections/locations of the columns are obtained. It is found that the buckling deformation curve can be divided into four stages: initial expansion stage, stable stage, compression stage and failure stage. The fire test results concluded that the residual buckling capacities of FRW steel columns are substantially higher than the conventional steel columns at elevated temperatures. Furthermore, the numerical results show good agreement with the fire test results in terms of the critical temperature and maximum axial elongation. Finally, the critical temperatures between the numerical results and various code/standard curves (GB 51249, Eurocode 3, AS 4100, BS 5950 and AISC) are compared and verified both in the buckling resistance domain and in the temperature domain. It is demonstrated that the FRW steel columns have sufficient safety redundancy for fire resistance when they are designed according to current codes or standards.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • 제22권3호
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.

Study of using the loss rate of bolt pretension as a damage predictor for steel connections

  • Chui-Hsin Chen;Chi-Ming Lai;Ker-Chun Lin;Sheng-Jhih Jhuang;Heui-Yung Chang
    • Earthquakes and Structures
    • /
    • 제24권2호
    • /
    • pp.81-90
    • /
    • 2023
  • The maximum drifts are important to the seismic evaluation of steel buildings and connections, but the information can hardly be obtained from the post-earthquake field investigation. This research studies the feasibility of using the loss rate of bolt pretension as an earthquake damage predictor. Full-scale tests were made on four steel connections using bolted-web-welded-flange details. One connection was unreinforced (UN), another was reinforced with double shear plates (DS), and the other two used reduced beam sections (RBS). The preinstalled strain gauges were used to control the pretensions and monitor the losses of the high-strength bolts. The results showed that the loss rate of bolt pretension was highly related to the damage of the connections. The pretensions lost up to 10% in all the connections at the yield drifts of 0.5% to 1%. After yielding of the connections, the pretensions lost significantly until fracture occurred. The UN and DS connections failed with a maximum drift of 4 %, and the two RBS connections showed better ductility and failed with a maximum drift of 6%. Under the far-field-type loading protocol, the loss rate grew to 60%. On the contrary, the rate for the specimen under near-fault-type loading protocol was about 40%. The loss rate of bolt pretension is therefore recommended to use as an earthquake damage predictor. Additionally, the 10% and 40% loss rates are recommended to predict the limit states of connection yielding and maximum strength, respectively, and to define the performance levels of serviceability and life-safety for the buildings.

Cyclic loading test for concrete-filled hollow PC column produced using various inner molds

  • Chae-Rim Im;Sanghee Kim;Keun-Hyeok Yang;Ju-Hyun Mun;Jong Hwan Oh;Jae-Il Sim
    • Steel and Composite Structures
    • /
    • 제46권6호
    • /
    • pp.793-804
    • /
    • 2023
  • In this study, cyclic loading tests were conducted to assess the seismic performance of cast-in-place (CIP) concrete-filled hollow core precast concrete columns (HPCC) constructed using steel ducts and rubber tubes. The outer shells of HPCC, with a hollow ratio of 47%, were fabricated using steel ducts and rubber tubes, respectively. Two combinations of shear studs & long threaded bars or cross-deformed bars & V-ties were employed to ensure the structural integrity of the old concrete (outer shell) and new CIP concrete. Up to a drift ratio of 3.8%, the hysteresis loop, yielding stiffness, dissipated energy, and equivalent damping ratio of the HPCC specimens were largely comparable to those of the solid columns. Besides the similarities in cyclic load-displacement responses, the strain history of the longitudinal bars and the transverse confinement of the three specimens also exhibited similar patterns. The measured maximum moment exceeded the predicted moment according to ACI 318 by more than 1.03 times. However, the load reduction of the HPCC specimen after reaching peak strength was marginally greater than that of the solid specimen. The energy dissipation and equivalent damping ratios of the HPCC specimens were 20% and 25% lower than those of the solid specimen, respectively. Taking into account the overall results, the structural behavior of HPCC specimens fabricated using steel ducts and rubber tubes is deemed comparable to that of solid columns. Furthermore, it was confirmed that the two combinations for securing structural integrity functioned as expected, and that rubber air-tubes can be effectively used to create well-shaped hollow sections.

가속도계를 활용한 지하 및 지반구조물 상시 계측 방안에 관한 연구 (Study of Continuous Monitoring for Underground and Geotechnical Structures using Accelerometers)

  • 김건웅
    • 한국지반신소재학회논문집
    • /
    • 제23권2호
    • /
    • pp.19-27
    • /
    • 2024
  • 댐과 터널 그리고 사면 같은 지반구조물의 정기적인 계측 및 모니터링은 안전성 유지를 위해 필요하다. 국내에서는 드론과 가속도계와 같은 장비를 활용하여 지반구조물에 대한 점검 및 모니터링을 수행한다. 하지만, 드론은 구조물 및 지반 내부의 변화를 파악에 어려움이 있고, 가속도계는 일반적으로 내진 설계나 변형량 측정에만 활용되고 있다. 이에 본 논문은 가속도계를 활용하여 지반 내부 정보를 실시간 또는 정기적으로 계측하기 위해 SASW 시험 활용을 제안하였다. 제안된 방법은 SASW 시험의 해석 기법의 일부분만 활용하여 지반구조물의 강도 및 상태 변화를 추적한다. 이를 위해, SASW를 활용하여 사면, 댐 및 터널과 같은 지반구조물의 안전성을 평가한 사례들을 분석하여 기술의 적합성을 확인하였다. 또한, 현장 적용성을 높이기 위해, 복잡한 해석을 요구하는 전단 속도 프로파일을 도출하는 2차 해석보다는 분산곡선을 도출하는 1차 해석만을 활용하는 방안을 모색하였다. 본 연구에서 제안된 기술을 통해 가속도계를 활용하여 지반구조물의 지속적인 모니터링 및 유지보수가 가능할 것으로 기대된다.

Evaluation of Bending Creep Performance of Laminated Veneer Lumber (LVL) Formwork for the Design of Timber Concrete Composite (TCC) Structures

  • Hyun Bae KIM;Takuyuki YOSHIOKA;Kazuhiko FUJITA;Jun ITO;Haruka NOHARA;Keiji NOHARA;Toshiki NARITA;Wonwoo LEE;Arata HOSOKAWA;Tetsuiji TANAKA
    • Journal of the Korean Wood Science and Technology
    • /
    • 제52권4호
    • /
    • pp.375-382
    • /
    • 2024
  • The study focuses on evaluating the bending creep performance of laminated veneer lumber (LVL) formwork in timber concrete composite (TCC) structures. Timber-framed construction is highlighted for its environmental benefits and seismic resistance, but limitations such as poor tensile strength and brittle failure in bending hinder its use in high-rise buildings. Wood-concrete hybrid structures, particularly those using reinforced concrete slabs with TCC floors, emerge as a potential solution. The research aims to understand the time-dependent behavior of TCC components, considering factors like wood and concrete shrinkage and connection creep. The experiment was conducted in western Japan on the TCC floor designed for use in the Kama-city Inatsuki-higashi compulsory education school. The LVL formwork, measuring 9,000 mm by 900 mm, and concrete is loaded onto it for testing. The creep test periods are examined using concrete loading. It employs a comprehensive creep analysis, adhering to Japanese standards, involving deflection measurements and regression analysis to estimate the creep coefficient. Results indicate substantial deformation after shoring removal, suggesting potential reinforcement needs. The study recommends extending test periods for improved accuracy and recognizing regional climate impacts. Overall, the research provides valuable insights into the potential of LVL formwork in TCC structures, emphasizing safety considerations and paving the way for further experimentation under varied conditions to validate structural integrity.

초분광 근적외선 영상 기술을 이용한 흙의 함수비 측정 기술 (Soil Water Content Measurement Technology Using Hyperspectral Visible and Near-Infrared Imaging Technique)

  • 임환희;전에녹;이득환;전준서;이승래
    • 한국지반공학회논문집
    • /
    • 제35권11호
    • /
    • pp.51-62
    • /
    • 2019
  • 본 연구에서는 초분광 근적외선 영상을 이용하여 광역지역의 흙의 함수비 변화를 간편한 방법으로 예측하기 위해 수행되었다. 근적외선(VNIR) 영역대에서 변화되는 함수비 별로 모래, 화강풍화토(우면산, 구룡산, 대모산, 황령산), 카오리나이트를 초분광 카메라로 촬영하여 반사율을 추출하였고, 흙의 함수비와 가장 연관성 높은 매개변수를 찾기 위하여 선정된 매개변수와 함수비를 변수로하여 Partial Least Square Regression(PLSR) 분석을 이용하여 함수비 예측모델을 구축하였다. 함수비 예측모델을 구축한 결과, 흙의 종류에 관계없이 Area of reflectance(Near-infrared, NIR)의 매개변수가 흙의 함수비와 가장 연관성 높은 매개변수임을 확인하였고, 모든 흙에서 예측모델의 정확도(R2)는 0.9 이상임을 확인하였다. 또한 흙의 실제 함수비와 비교 검증해본 결과, 평균절대백분율(mean absolute percentage error, MAPE)이 15%이내로 확인되었다. 따라서 대상 흙들에서 50% 이내에서 변화되는 함수비 예측 가능성을 확인하였다. 본 연구를 통해 초분광 근적외선 영상을 이용하여 모래, 화강풍화토, 카오리나이트의 함수비 예측 가능성을 확인하였고, 모델의 정확도 개선 및 더 높은 범위의 함수비 예측을 위해서는 흙의 분류모델 개발이 추가적으로 필요하다고 판단된다.