• Title/Summary/Keyword: seismic prone building

Search Result 24, Processing Time 0.024 seconds

Staticand Dynamic Design of Zipper Columns in Inverted V Braced Steel Frames (역V형 철골 중심가새골조의 정적/동적 지퍼기둥.설계법)

  • Lee Cheol-Ho;Kim Jung-Jae
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.733-740
    • /
    • 2006
  • Inverted V (or chevron) braced steel frames have been seen as being highly prone to soft story response once the compression brace buckles under earthquake loading. To salvage chevron braced frames. the concept of the zipper column was proposed many years ago such that the zipper column can redistribute the inelastic demand over the height of the building. However. rational design method for the zipper column has not been established yet. In this paper, a new dynamic design method for the zipper column was proposed by combining the refined physical braced model and modal pushover analysis. Inelastic dynamic analysis conducted on 6 story building model showed that the proposed method was more superior to the existing static design method and was very effective in improving seismic performance of chevron braced steel frames.

  • PDF

Optimization of the seismic performance of masonry infilled R/C buildings at the stage of design using artificial neural networks

  • Kostinakis, Konstantinos G.;Morfidis, Konstantinos E.
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.295-309
    • /
    • 2020
  • The construction of Reinforced Concrete (R/C) buildings with unreinforced masonry infills is part of the traditional building practice in many countries with regions of high seismicity throughout the world. When these buildings are subjected to seismic motions the presence of masonry infills and especially their configuration can highly influence the seismic damage state. The capability to avoid configurations of masonry infills prone to seismic damage at the stage of initial architectural concept would be significantly definitive in the context of Performance-Based Earthquake Engineering. Along these lines, the present paper investigates the potential of instant prediction of the damage response of R/C buildings with various configurations of masonry infills utilizing Artificial Neural Networks (ANNs). To this end, Multilayer Feedforward Perceptron networks are utilized and the problem is formulated as pattern recognition problem. The ANNs' training data-set is created by means of Nonlinear Time History Analyses of 5 R/C buildings with a large number of different masonry infills' distributions, which are subjected to 65 earthquakes. The structural damage is expressed in terms of the Maximum Interstorey Drift Ratio. The most significant conclusion which is extracted is that the ANNs can reliably estimate the influence of masonry infills' configurations on the seismic damage level of R/C buildings incorporating their optimum design.

Experimental study on a Cantilever Type Metallic Damper for Seismic Retrofit of Building Structures (건물의 내진보강을 위한 캔틸레버타입 강재댐퍼의 실험)

  • Ahn, Tae-Sang;Kim, Young-Ju;Park, Jin-Hwa;Kim, Hyung-Geun;Jang, Dong-Woon;Oh, Sang-Hoon
    • Journal of Korean Society of Steel Construction
    • /
    • v.24 no.2
    • /
    • pp.149-161
    • /
    • 2012
  • The use of seismic energy-dissipative devices for passive control is increasing exponentially in the recent years for both new and existing buildings. Use of these devices started in and has been somewhat limited to developed countries. One of the current challenges is to promote the use of seismic dampers in earthquake-prone developing countries by lowering the cost of the devices. This paper proposed a new type of seismic damper based on yielding of a cantilever type metallic element for seismic retrofit of existing and new building structures. The hysteretic behavior and energy dissipation capacity of the proposed damper was investigated using component tests under cyclic loads. The experimental results indicated that the damping device had stable restoring force characteristics and a high energy dissipation capacity. Based on these results, a simple hysteretic model for predicting the load-displacement curve of the seismic damper was proposed.

Challenges in High-rise Wooden Structures and the Seismic Design in Japan

  • Hiroyasu, Sakata;Yoshihiro, Yamazaki
    • International Journal of High-Rise Buildings
    • /
    • v.11 no.3
    • /
    • pp.171-180
    • /
    • 2022
  • Research and development on high-rise or large-scale wooden buildings have been actively conducted both domestically and internationally. The trend of high-rise wooden buildings is driven by increasing awareness of environmental issues. To utilize wooden materials in buildings is believed to lead to the reduction of the environmental impact. On the other hand, Japan is one of the most earthquake-prone countries in the world, and many wooden detached houses have been damaged in past major earthquakes. This paper summarizes the issues that arise in the realization of medium- and high-rise wooden buildings in Japan, and introduces the initiatives that have been seen so far.

Inelastic Behavior and Seismic Retrofit of Inverted V Braced Steel Frames (역V형 철골 가새골조의 비탄성거동 및 내진성능향상 방안에 관한 연구)

  • Kim, Nam Hoon;Lee, Cheol Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.15 no.5 s.66
    • /
    • pp.571-578
    • /
    • 2003
  • An effective seismic retrofit scheme for inverted V braced (or chevron type) steel frames was proposed by studying the redistribution of forces in the post-buckling range. The steel frames with chevron bracing are highly prone to soft story response once the compression brace buckles under earthquake loading. This paper shows that the seismic performance of such frames could be significantly improved by supplying tie bars to redistribute the inelastic deformation demand over the height of the building. A practical design method of the retrofit tie bars was also proposed by considering the sequence of buckling occurrence.

Robust passive damper design for building structures under uncertain structural parameter environments

  • Fujita, Kohei;Takewaki, Izuru
    • Earthquakes and Structures
    • /
    • v.3 no.6
    • /
    • pp.805-820
    • /
    • 2012
  • An enhanced and efficient methodology is proposed for evaluating the robustness of an uncertain structure with passive dampers. Although the structural performance for seismic loads is an important design criterion in earthquake-prone countries, the structural parameters such as storey stiffnesses and damping coefficients of passive dampers are uncertain due to various factors or sources, e.g. initial manufacturing errors, material deterioration, temperature dependence. The concept of robust building design under such uncertain structural-parameter environment may be one of the most challenging issues to be tackled recently. By applying the proposed method of interval analysis and robustness evaluation for predicting the response variability accurately, the robustness of a passively controlled structure can be evaluated efficiently in terms of the so-called robustness function. An application is presented of the robustness function to the design and evaluation of passive damper systems.

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

Seismic vulnerability assessment of a historical building in Tunisia

  • El-Borgi, S.;Choura, S.;Neifar, M.;Smaoui, H.;Majdoub, M.S.;Cherif, D.
    • Smart Structures and Systems
    • /
    • v.4 no.2
    • /
    • pp.209-220
    • /
    • 2008
  • A methodology for the seismic vulnerability assessment of historical monuments is presented in this paper. The ongoing work has been conducted in Tunisia within the framework of the FP6 European Union project (WIND-CHIME) on the use of appropriate modern seismic protective systems in the conservation of Mediterranean historical buildings in earthquake-prone areas. The case study is the five-century-old Zaouia of Sidi Kassem Djilizi, located downtown Tunis, the capital of Tunisia. Ambient vibration tests were conducted on the case study using a number of force-balance accelerometers placed at selected locations. The Enhanced Frequency Domain Decomposition (EFDD) technique was applied to extract the dynamic characteristics of the monument. A 3-D finite element model was developed and updated to obtain reasonable correlation between experimental and numerical modal properties. The set of parameters selected for the updating consists of the modulus of elasticity in each wall element of the finite element model. Seismic vulnerability assessment of the case study was carried out via three-dimensional time-history dynamic analyses of the structure. Dynamic stresses were computed and damage was evaluated according to a masonry specific plane failure criterion. Statistics on the occurrence, location and type of failure provide a general view for the probable damage level and mode. Results indicate a high vulnerability that confirms the need for intervention and retrofit.

Structural Shear Wall Systems with Metal Energy Dissipation Mechanism

  • Li, Guoqiang;Sun, Feifei;Pang, Mengde;Liu, Wenyang;Wang, Haijiang
    • International Journal of High-Rise Buildings
    • /
    • v.5 no.3
    • /
    • pp.195-203
    • /
    • 2016
  • Shear wall structures have been widely used in high-rise buildings during the past decades, mainly due to their good overall performance, large lateral stiffness, and high load-carrying capacity. However, traditional reinforced concrete wall structures are prone to brittle failure under seismic actions. In order to improve the seismic behavior of traditional shear walls, this paper presents three different metal energy-dissipation shear wall systems, including coupled shear wall with energy-dissipating steel link beams, frame with buckling-restrained steel plate shear wall structure, and coupled shear wall with buckling-restrained steel plate shear wall. Constructional details, experimental studies, and calculation analyses are also introduced in this paper.

Development of comprehensive earthquake loss scenarios for a Greek and a Turkish city - structural aspects

  • Kappos, A.J.;Panagopoulos, G.K.;Sextos, A.G.;Papanikolaou, V.K.;Stylianidis, K.C.
    • Earthquakes and Structures
    • /
    • v.1 no.2
    • /
    • pp.197-214
    • /
    • 2010
  • The paper presents a methodology for developing earthquake damage and loss scenarios for urban areas, as well as its application to two cities located in Mediterranean countries, Grevena (in Greece) and D$\ddot{u}$zce (in Turkey), that were struck by strong earthquakes in the recent past. After compiling the building inventory in each city, fragility curves were derived using a hybrid approach previously developed by the authors, and a series of seismic scenarios were derived based on microzonation studies that were specifically conducted for each city (see companion paper by Pitilakis et al.). The results obtained in terms of damage estimates, required restoration times and the associated costs are presented in a GIS environment. It is deemed that both the results obtained, and the overall methodology and tools developed, contribute towards the enhancement of seismic safety in the Mediterranean area (as well as other earthquake-prone regions), while they constitute a useful pre-earthquake decision-making tool for local authorities.