• Title/Summary/Keyword: seismic performance levels

Search Result 234, Processing Time 0.021 seconds

Seismic performance of lateral load resisting systems

  • Subramanian, K.;Velayutham, M.
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.487-502
    • /
    • 2014
  • In buildings structures, the flexural stiffness reduction of beams and columns due to concrete cracking plays an important role in the nonlinear load-deformation response of reinforced concrete structures under service loads. Most Seismic Design Codes do not precise effective stiffness to be used in seismic analysis for structures of reinforced concrete elements, therefore uncracked section properties are usually considered in computing structural stiffness. But, uncracked stiffness will never be fully recovered during or after seismic response. In the present study, the effect of concrete cracking on the lateral response of structure has been taken into account. Totally 120 cases of 3 Dimensional Dynamic Analysis which considers the real and accidental torsional effects are performed using ETABS to determine the effective structural system across the height, which ensures the performance and the economic dimensions that achieve the saving in concrete and steel amounts thus achieve lower cost. The result findings exhibits that the dual system was the most efficient lateral load resisting system based on deflection criterion, as they yielded the least values of lateral displacements and inter-storey drifts. The shear wall system was the most economical lateral load resisting compared to moment resisting frame and dual system but they yielded the large values of lateral displacements in top storeys. Wall systems executes tremendous stiffness at the lower levels of the building, while moment frames typically restrain considerable deformations and provide significant energy dissipation under inelastic deformations at the upper levels. Cracking found to be more impact over moment resisting frames compared to the Shear wall systems. The behavior of various lateral load resisting systems with respect to time period, mode shapes, storey drift etc. are discussed in detail.

Ground motion selection and scaling for seismic design of RC frames against collapse

  • Bayati, Zeinab;Soltani, Masoud
    • Earthquakes and Structures
    • /
    • v.11 no.3
    • /
    • pp.445-459
    • /
    • 2016
  • Quantitative estimation of seismic response of various structural systems at the collapse limit state is one of the most significant objectives in Performance-Based Earthquake Engineering (PBEE). Assessing the effects of uncertainties, due to variability in ground motion characteristics and random nature of earthquakes, on nonlinear structural response is a pivotal issue regarding collapse safety prediction. Incremental Dynamic Analysis (IDA) and fragility curves are utilized to estimate demand parameters and seismic performance levels of structures. Since producing these curves based on a large number of nonlinear dynamic analyses would be time-consuming, selection of appropriate earthquake ground motion records resulting in reliable responses with sufficient accuracy seems to be quite essential. The aim of this research study is to propose a methodology to assess the seismic behavior of reinforced concrete frames at collapse limit state via accurate estimation of seismic fragility curves for different Engineering Demand Parameters (EDPs) by using a limited number of ground motion records. Research results demonstrate that accurate estimating of structural collapse capacity is feasible through applying the proposed method offering an appropriate suite of limited ground motion records.

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.

Efficient damage assessment for selected earthquake records based on spectral matching

  • Strukar, Kristina;Sipos, Tanja Kalman;Jelec, Mario;Hadzima-Nyarko, Marijana
    • Earthquakes and Structures
    • /
    • v.17 no.3
    • /
    • pp.271-282
    • /
    • 2019
  • Knowing the response of buildings to earthquakes is very important in order to ensure that a structure is able to withstand a given level of ground shaking. Thus, nonlinear dynamic earthquake engineering analyses are unavoidable and are preferable procedure in the seismic assessment of buildings. In order to estimate seismic performance on the basis of the hazard at the site where the structure is located, the selection of appropriate seismic input is known to be a critical step while performing this kind of analysis. In this paper, seismic analysis is performed for a four-story reinforced concrete ISPRA frame structure which is designed according to Eurocode 8 (EC8). A total of 90 different earthquake scenarios were selected, 30 for each of three target spectrums, EC8 spectrum, Uniform Hazard Spectrum (UHS), and Conditional Mean Spectrum (CMS). The aim of this analysis was to evaluate the average maximum Inter-story Drift Ratio (IDR) for each target spectrum. Time history analysis for every earthquake record was obtained and, as a result, IDR as the main measure of damage were presented in order to compare with defined performance levels of reinforced concrete bare frames.

Probabilistic analysis of seismically isolated elevated liquid storage tank using multi-phase friction bearing

  • Moeindarbari, Hesamaldin;Malekzadeh, Masoud;Taghikhany, Touraj
    • Earthquakes and Structures
    • /
    • v.6 no.1
    • /
    • pp.111-125
    • /
    • 2014
  • Multiple level performance of seismically isolated elevated storage tank isolated with multi-phase friction pendulum bearing is investigated under totally 60 records developed for multiple level seismic hazard analysis (SLE, DBE and MCE). Mathematical formulations involving complex time history analysis have been proposed for analysis of typical storage tank by multi-phase friction pendulum bearing. Multi-phase friction pendulum bearing represent a new generation of adaptive friction isolation system to control super-structure demand in different hazard levels. This isolator incorporates four concave surfaces and three independent pendulum mechanisms. Pendulum stages can be set to address specific response criteria for moderate, severe and very severe events. The advantages of a Triple Pendulum Bearing for seismic isolation of elevated storage tanks are explored. To study seismic performance of isolated elevated storage tank with multi-phase friction pendulum, analytical simulations were performed with different friction coefficients, pendulum radii and slider displacement capacities.

Effect of Near- and Far-Fault Earthquakes for Seismic Fragility Curves of PSC Box Girder Bridges (PSC 상자형교의 지진취약도 곡선에 대한 근거리 및 원거리 지진의 영향)

  • Jin, He-Shou;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.5
    • /
    • pp.53-64
    • /
    • 2010
  • Seismic fragility curves of structures represent the probability of exceeding the prescribed structural damage state for a given various levels of ground motion intensity, such as peak ground acceleration (PGA). This means that seismic fragility curves are essential to the evaluation of structural seismic performance and assessments of risk. Most of existing studies have not considered the near- and far-fault earthquake effect on the seismic fragility curves. In order to evaluate the effect of near- and far-fault earthquakes, seismic fragility curves for PSC box girder bridges subjected to near- and far-fault earthquakes are calculated and compared. The seismic fragility curves are strongly dependent on the earthquake characteristics such as fault distance. This paper suggests that the effect of near- and far-fault earthquakes on seismic fragility curves of PSC box girder bridge structure should be considered.

Probabilistic sensitivity of base-isolated buildings to uncertainties

  • Gazi, Hatice;Alhan, Cenk
    • Smart Structures and Systems
    • /
    • v.22 no.4
    • /
    • pp.441-457
    • /
    • 2018
  • Characteristic parameter values of seismic isolators deviate from their nominal design values due to uncertainties and/or errors in their material properties and element dimensions, etc. Deviations may increase over service life due to environmental effects and service conditions. For accurate evaluation of the seismic safety level, all such effects, which would result in deviations in the structural response, need to be taken into account. In this study, the sensitivity of the probability of failure of the structures equipped with nonlinear base isolation systems to the uncertainties in various isolation system characteristic parameters is investigated in terms of various isolation system and superstructure response parameters in the context of a realistic three-dimensional base-isolated building model via Monte Carlo Simulations. The inherent record-to-record variability nature of the earthquake ground motions is also taken into account by carrying out analyses for a large number of ground motion records which are classified as those with and without forward-directivity effects. Two levels of nominal isolation periods each with three different levels of uncertainty are considered. Comparative plots of cumulative distribution functions and related statistical evaluation presented here portray the potential extent of the deviation of the structural response parameters resulting from the uncertainties and the uncertainty levels considered, which is expected to be useful for practicing engineers in evaluating isolator test results for their projects.

Evaluation of Emulative Level for Precast Moment Frame Systems with Dry Mechanical Splices by Using Nonlinear Dynamic Analysis (비선형동적해석을 통한 건식 기계적이음을 갖는 프리캐스트 모멘트 골조의 동등성 평가)

  • Kim, Seon-Hoon;Lee, Won Jun;Lee, Deuckhang
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.2
    • /
    • pp.85-92
    • /
    • 2024
  • This study presents code-compliant seismic details by addressing dry mechanical splices for precast concrete (PC) beam-column connections in the ACI 318-19 code. To this end, critical observations of previous test results on precast beam-column connection specimens with the proposed seismic detail are briefly reported in this study, along with a typical reinforced concrete (RC) monolithic connection. On this basis, nonlinear dynamic models were developed to verify seismic responses of the PC emulative moment-resisting frame systems. As the current design code allows only the emulative design approach, this study aims at identifying the seismic performances of PC moment frame systems depending on their emulative levels, for which two extreme cases were intentionally chosen as the non-emulative (unbonded self-centering with marginal energy dissipation) and fully-emulative connection details. Their corresponding hysteresis models were set by using commercial finite element analysis software. According to the current seismic design provisions, a typical five-story building was designed as a target PC building. Subsequently, nonlinear dynamic time history analyses were performed with seven ground motions to investigate the impact of emulation level or hysteresis models (i.e., energy dissipation performance) on system responses between the emulative and non-emulative PC moment frames. The analytical results showed that both the base shear and story drift ratio were substantially reduced in the emulative system compared to that of the non-emulative one, and it indicates the importance of the code-compliant (i.e., emulative) connection details on the seismic performance of the precast building.

Collapse Capacity Evaluation of Steel Intermediate Moment Frames Using Incremental Dynamic Analysis (비선형 증분동적해석을 통한 철골 중간모멘트 골조의 붕괴성능 평가)

  • Shin, Dong-Hyeon;Kim, Hyung-Joon
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.2
    • /
    • pp.9-20
    • /
    • 2014
  • Steel intermediate moment frames (IMFs) have been generally used as seismic load resisting systems (SLRSs) of a building to provide resistances against strong ground shaking. However, most of low and mid-rise steel buildings in Korea were constructed during pre-seismic code era or before the introduction of well-organized current seismic codes. It has been recognized that the seismic performance of these steel IMFs is still questionable. In order to respond to such a question, this study quantitatively investigates the seismic capacities of steel IMFs. Prototype models are built according to the number of stories, the levels of elastic seismic design base shear and the ductilities of structural components. Also, the other prototype models employing hysteretic energy dissipating devices (HEDDs) are considered. The collapse mechanism and the seismic performance of the prototype models are then described based on the results obtained from nonlinear-static and incremental-dynamic analyses. The seismic performance of the prototype models is assessed from collapse margin ratio (CMR) and collapse probability. From the assessment, the prototype model representing new steel IMFs has enough seismic capacities while, the prototype models representing existing steel IMFs provide higher collapse probabilities. From the analytic results of the prototype models retrofitted with HEDDs, the HEDDs enhance the seismic performance and collapse capacity of the existing steel IMFs. This is due to the energy dissipating capacity of the HEDDs and the redistribution of plastic hinges.

Method of Determination of Seismic Design Parameters for the Next Generation of Design Provisions (차세대 내진 설계 규준을 위한 계수 결정 방법)

  • 한상환;이리형
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1995.04a
    • /
    • pp.88-96
    • /
    • 1995
  • Seismic design provisions in Korea has developed based on seismic provisions in United States (e.g., ATC 3-06). Current seismic design provisions in U .S. is moving toward adopting enhanced concept for design. Federal Emergence Management Agency (FEMA) Provides the NEHRP recommended Provisions for the Development of Seismic Regulations for New Buildings which can be used as a source document for use by any interested members of the building community. Current seismic design provisions in U .S. generally use a uni-level force. These provisions can not be satisfied if the limit state design is concerned. Limit state can be defined as a state causing undesirable performance o( a structure (e .g., serviceability, ultimate, buckling, etc.). Even if there are provision for controlling drift by two levels, it is still difficult to satisfy limit states using uni-level force. Architectural Institute of Japan (AIJ) uses a hi-level forces Int seismic loadings which can satisfy serviceability and ultimate limit state. However, the seismic parameters used in AIJ guideline are basically determined by subjective manner of code committee member and professions. These parameters need to be determined based on target quantities (target reliability, target energy dissipation, target displacement, target stress level, etc.). This study develops the method to determine the sesmic design parameters based on a certain taget level. Reliability is used as a target level and load factors in ANSI/ASCE 7-88 are selected as design parameters to be determined.

  • PDF