• Title/Summary/Keyword: seismic motions

Search Result 808, Processing Time 0.024 seconds

On component isolation of conceptual advanced reactors

  • Shrestha, Samyog;Kurt, Efe G.;Prakash, Arun;Irfanoglu, Ayhan
    • Nuclear Engineering and Technology
    • /
    • v.54 no.8
    • /
    • pp.2974-2988
    • /
    • 2022
  • Implementation of component isolation in nuclear industry is challenging due to gaps in research and the lack of specific guidelines. In this study, parameters affecting component-level isolation of advanced reactor vessels are identified based on a representative numerical model with explicit consideration of nonlinear soil-structure interaction (SSI). The objective of this study is to evaluate the effectiveness of, and to identify potential limitations of using conventional friction pendulum bearings to seismically isolate vessels. It is found that slender vessels or components are particularly vulnerable to rotational accelerations at the isolation interface, which are caused by rotation of the sub-structure and by excitation of higher modes in the horizontal direction of the seismically isolated system. Component isolation is found to be more effective for relatively stiffer vessels and at sites with stiff soil. Considering that conventional isolators are deficient in resisting axial tension, it is observed that the optimum location for supporting a component to achieve seismic isolation, is at a cross-sectional plane passing through the center of mass of the vessel. These findings are corroborated by numerous simulations of the response of seismically isolated reactor vessels at different nuclear power plant sites subject to a variety of ground motions.

Considerations for the Generation of In-Structure Response Spectra in Seismically Isolated Structures (면진구조물 내 층응답스펙트럼 작성을 위한 고려사항)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.95-103
    • /
    • 2022
  • In order to evaluate the earthquake safety of equipment in structures, it is essential to analyze the In-Structure Response Spectrum (ISRS). The ISRS has a peak value at the frequency corresponding to the structural vibration mode, but the frequency and amplitude at the peak can vary because of many uncertain parameters. There are several seismic design criteria for ISRS peak-broadening for fixed base structures. However, there are no suggested criteria for constructing the design ISRS of seismically isolated structures. The ISRS of isolated structures may change due to the major uncertainty parameter of the isolator, which is the shear stiffness of the isolator and the several uncertainty parameters caused by the nonlinear behavior of isolators. This study evaluated the effects on the ISRS due to the initial stiffness of the bi-linear curve of isolators and the variation of effective stiffness by the input ground motion intensity and intense motion duration. Analyzing a simplified structural model for isolated base structure confirmed that the ISRS at the frequency of structural mode was amplified and shifted. It was found that the uncertainty of the initial stiffness of isolators significantly affects the shape of ISRS. The variation caused by the intensity and duration of input ground motions was also evaluated. These results suggested several considerations for generating ISRS for seismically isolated structures.

Optimal Design for Seismically Isolated Bridges with Frictional Bearings (마찰받침이 있는 지진격리교량의 최적설계)

  • Lee, Gye-Hee;You, Sang-Bae;Ha, Dong-Ho
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.5A
    • /
    • pp.399-406
    • /
    • 2010
  • In this paper, the optimization of frictional bearings that applied to improve the seismic performance of conventional bridges were conducted. The nonlinear dynamic analysis of steel bridges and concrete bridges are carried out with the El Centro and artificial earthquake motions, and the reponses of the bridges were optimized by genetic algorithm. The object functions were considered with two parameters, such as shear forces and displacements at bearing, and the optimum object functions were searched by varying the weighting factors of the two parameters. As results, in case of the steel bridges, the optimum results were obtained when larger weight factor was imposed to the shear force. However, in case of concrete bridges, larger weight factor was need to the displacement for optimum results.

Damages to Rubble Stone Masonry Structures during the January 24, 2020, Sivrice (Elazığ) Earthquake in Turkey

  • Ural, Ali;Firat, Fatih K.;Kara, Mehmet E.;Celik, Tulin;Tanriverdi, Sukran
    • Earthquakes and Structures
    • /
    • v.23 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • The earthquake with a magnitude of Mw 6.8, which occurred on January 24, 2020, hit Sivrice (Elazığ) province of Turkey. The earthquake area takes place on the East Anatolian Fault Zone (EAFZ) located between the Arabian and Turkish plates, one of the most active seismic regions in Turkey. According to the Disaster and Emergency Management Presidency of Turkey (AFAD), 584 buildings collapsed, 6845 were heavily damaged, 1207 were moderately damaged, and 14389 were slightly damaged. The authors went to the region of earthquake after the mainshock to investigate the earthquake performances of masonry buildings. This paper presents the seismological aspects of the earthquake, acceleration records, and response spectra with different damping ratios. Furthermore, some typical damages and failure mechanisms on masonry buildings like rubble stone dwellings and minarets are discussed with illustrative photos. Although many major earthquakes have occurred in the region, similar mistakes are still being made in masonry building construction. In consequence, some suggestions viewpoint of the wooden tie beams, the corner details of masonry walls, the door and window openings, the metal fasteners and the earthquake codes are made to be more careful in masonry constructions at the end of the article.

Fragility Analysis Method Based on Seismic Performance of Bridge Structure considering Earthquake Frequencies (지진 진동수에 따른 교량의 내진성능기반 취약도 해석 방법)

  • Lee, Dae-Hyoung;Chung, Young-Soo;Yang, Dong-Wook
    • Journal of the Korea Concrete Institute
    • /
    • v.21 no.2
    • /
    • pp.187-197
    • /
    • 2009
  • This paper presents a systematic approach for estimating fragility curves and damage probability matrices for different frequencies. Fragility curves and damage probability indicate the probabilities that a structure will sustain different degrees of damage at different ground motion levels. The seismic damages are to achieved by probabilistic evaluation because of uncertainty of earthquakes. In contrast to previous approaches, this paper presents a method that is based on nonlinear dynamic analysis of the structure using empirical data. This paper presents the probability of damage as a function of peak ground acceleration and estimates the probability of five damage levels for prestressed concrete (PSC) bridge pier subjected to given ground acceleration. At each level, 100 artificial earthquake motions were generated in terms of soil conditions, and nonlinear time domain analyses was performed for the damage states of PSC bridge pier structures. These damage states are described by displacement ductility resulting from seismic performance based on existing research results. Using the damage states and ground motion parameters, five fragility curves for PSC bridge pier with five types of dominant frequencies were constructed assuming a log-normal distribution. The effect of dominant frequences was found to be significant on fragility curves.

FEM-based Seismic Reliability Analysis of Real Structural Systems (실제 구조계의 유한요소법에 기초한 지진 신뢰성해석)

  • Huh Jung-Won;Haldar Achintya
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.2 s.72
    • /
    • pp.171-185
    • /
    • 2006
  • A sophisticated reliability analysis method is proposed to evaluate the reliability of real nonlinear complicated dynamic structural systems excited by short duration dynamic loadings like earthquake motions by intelligently integrating the response surface method, the finite element method, the first-order reliability method, and the iterative linear interpolation scheme. The method explicitly considers all major sources of nonlinearity and uncertainty in the load and resistance-related random variables. The unique feature of the technique is that the seismic loading is applied in the time domain, providing an alternative to the classical random vibration approach. The four-parameter Richard model is used to represent the flexibility of connections of real steel frames. Uncertainties in the Richard parameters are also incorporated in the algorithm. The laterally flexible steel frame is then reinforced with reinforced concrete shear walls. The stiffness degradation of shear walls after cracking is also considered. The applicability of the method to estimate the reliability of real structures is demonstrated by considering three examples; a laterally flexible steel frame with fully restrained connections, the same steel frame with partially restrained connections with different rigidities, and a steel frame reinforced with concrete shear walls.

Hysteretic Behavior and Seismic Resistant Capacity of Precast Concrete Beam-to-Column Connections (프리캐스트 콘크리트 보-기둥 접합부의 이력거동 및 내진성능)

  • Choi, Hyun-Ki;Choi, Yun-Cheul;Choi, Chang-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.14 no.4
    • /
    • pp.61-71
    • /
    • 2010
  • Five half-scale beam-to-column connections in a precast concrete frame were tested with cyclic loading that simulated earthquake-type motions. Five half -scale interior beam-column assemblies representing a portion of a frame subjected to simulated seismic loading were tested, including one monolithic specimen and four precast specimens. Variables included the detailing used at the joint to achieve a structural continuity of the beam reinforcement, and the type of special reinforcement in the connection (whether ECC or transverse reinforcement). The specimen design followed the strong-column-weak-beam concept. The beam reinforcement was purposely designed and detailed to develop plastic hinges at the beam and to impose large inelastic shear force demands into the joint. The joint performance was evaluated on the basis of connection strength, stiffness, energy dissipation, and drift capacity. From the test results, the plastic hinges at the beam controlled the specimen failure. In general, the performance of the beam-to-column connections was satisfactory. The joint strength was 1.15 times of that expected for monolithic reinforced concrete construction. The specimen behavior was ductile due to tensile deformability by ECC and the yielding steel plate, while the strength was nearly constant up to a drift of 3.5 percent.

Estimation of Spectrum Decay Parameter χ and Stochastic Prediction of Strong Ground Motions in Southeastern Korea (한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 χ 추정 및 강지진동의 추계학적 모사)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.59-70
    • /
    • 2003
  • We estimated the spectrum decay parameter $\chi$ and the stress parameter ($\Delta$$\sigma$) in southeastern Korea. Especially, we propose a procedure to compute site-independent $\chi$$_{q}$ and dependent $\chi$$_{s}$ values, separately, This procedure is to use the coda normalization method for the computation of site independent Q or corresponding $\chi$$_{q}$ value as the first step followed by the next step, the computation of $\chi$$_{s}$ values for each site using the given $\chi$$_{q}$ value evaluated at the first step, For the estimation of stress parameter, we used seismic data monitored from three earthquakes occurred near Gyeongju in 1999 with the method of Jo and Baag, In addition, we simulated strong ground motion using the $\chi$ value and the stress parameter, In this case, we calculated the $\chi$ value with conventional method. The $\chi$ value of 0.016+0.000157R and the stress parameter of 92-bar was applied to the stochastic simulation, At last, we derived seismic attenuation equation using results of the stochastic prediction, and compared these results with some others reported previously.ported previously.

Quasi-Static Test for Seismic Performance of Circular Hollow RC Bridge Pier (원형 중공 콘크리트 교각의 내진성능에 대한 준정적 실험)

  • 정영수;한기훈;이강균;이대형
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.3 no.2
    • /
    • pp.41-54
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers, circular hollow columns are widely used in Korean highway bridges. Since the occurrence of 1995 Kobe earthquake, there have been much concerns about seismic design for various infrastructures, inclusive of bridge structures. It is, however, understood that there are not much research works for nonlinear behavior of circular hollow columns subjected to eqrthquake motions. The objective of this experimental research is to investigate nonlinear behavior of circular hollow reinforced concrete bridge piers under the quasi-static cyclic load, and then to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. Particularly for this test, constant 10 cyclic loads have been repeatedly actuated to investigate the magnitude of strength degradation for the displacement ductility factor. Important test parameters are seismic design, confinement steel ratio, axial force and load pattern. It is observed from quasi-static tests for 7 bridge piers that the seismically designed columns and the retrofitted columns show better performance than the nonseismically designed colums, i.e. about 20% higher for energy dissipation capacity and about 70% higher for curvatures.

  • PDF

A probabilistic fragility evaluation method of a RC box tunnel subjected to earthquake loadings (지진하중을 받는 RC 박스터널의 확률론적 취약도 평가기법)

  • Huh, Jungwon;Le, Thai Son;Kang, Choonghyun;Kwak, Kiseok;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.143-159
    • /
    • 2017
  • A probabilistic fragility assessment procedure is developed in this paper to predict risks of damage arising from seismic loading to the two-cell RC box tunnel. Especially, the paper focuses on establishing a simplified methodology to derive fragility curves which are an indispensable ingredient of seismic fragility assessment. In consideration of soil-structure interaction (SSI) effect, the ground response acceleration method for buried structure (GRAMBS) is used in the proposed approach to estimate the dynamic response behavior of the structures. In addition, the damage states of tunnels are identified by conducting the pushover analyses and Latin Hypercube sampling (LHS) technique is employed to consider the uncertainties associated with design variables. To illustrate the concepts described, a numerical analysis is conducted and fragility curves are developed for a large set of artificially generated ground motions satisfying a design spectrum. The seismic fragility curves are represented by two-parameter lognormal distribution function and its two parameters, namely the median and log-standard deviation, are estimated using the maximum likelihood estimates (MLE) method.